Download full-text PDF |
Source |
---|
Biomolecules
January 2025
Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy.
Background: Despite advances in uveal melanoma (UM) diagnosis and treatment, about 50% of patients develop distant metastases, thereby displaying poor overall survival. Molecular profiling has identified several genetic alterations that can stratify patients with UM into different risk categories. However, these genetic alterations are currently dispersed over multiple studies and several methodologies, emphasizing the need for a defined workflow that will allow standardized and reproducible molecular analyses.
View Article and Find Full Text PDFESMO Open
January 2025
Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bind.), Section of Medical Oncology, University of Palermo, Palermo, Italy.
Background: Germline pathogenic variants (gPVs) in the breast cancer susceptibility gene 1/2 (BRCA1/2) genes confer high-penetrance susceptibility to breast cancer (BC) and ovarian cancer (OC). Although most female BRCA carriers develop only a single BRCA-associated tumor in their lifetime, a smaller subpopulation is diagnosed with multiple primary tumors (MPTs). The genetic factors influencing this risk remain unclear.
View Article and Find Full Text PDFOncol Ther
November 2024
Department of Public Health, Federico II University of Naples, Naples, Italy.
Introduction: Personalized medicine has revolutionized the clinical management of patients with solid tumors. However, the large volumes of molecular data derived from next-generation sequencing (NGS) and the lack of harmonized bioinformatics pipelines drastically impact the clinical management of patients with solid tumors. A possible solution to streamline the molecular interpretation and reporting of NGS data would be to adopt automated data analysis software.
View Article and Find Full Text PDFSci Rep
September 2024
Department of Precision Medicine in Medical, Surgical and Critical Care (Me.Pre.C.C.), University of Palermo, Palermo, Italy.
The assessment of ctDNA has emerged as a minimally invasive avenue for molecular diagnosis and real-time tracking of tumor progression in NSCLC. However, the evaluation of ctDNA by amplicon-based NGS has been not endorsed by all the healthcare systems and remains to be fully integrated into clinical routine practice. To compare tissue single-gene with plasma multiplexed testing, we retrospectively evaluated 120 plasma samples from 12 consecutive patients with advanced non-squamous NSCLC who were part of a prospective study enrolling treatment-naïve patients and in which tissue samples were evaluated using a single-gene testing approach.
View Article and Find Full Text PDFExpert Rev Mol Diagn
September 2024
Department of Public Health, University of Naples Federico II, Naples, Italy.
Introduction: Lung Cancer (LC) continues to be a leading cause of cancer-related mortality globally, largely due to the asymptomatic nature of its early stages and the limitations of current diagnostic methods such as Low-Dose Computed Tomography (LDCT), whose often result in late diagnosis, highlighting an urgent need for innovative, minimally invasive diagnostic techniques that can improve early detection rates.
Areas Covered: This review delves into the potential of genomic characterization and mutational profiling to enhance early LC diagnosis, exploring the current state and limitations of traditional diagnostic approaches and the revolutionary role of Liquid Biopsies (LB), including cell-free DNA (cfDNA) analysis through fragmentomics and methylomics. New genomic technologies that allow for earlier detection of LC are scrutinized, alongside a detailed discussion on the literature that shaped our understanding in this field.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!