Hyponatremia leads to hyperexcitability of neurons, seizures, and coma. It is well established that uptake of neurotransmitters is a sodium-dependent process. Therefore, we suggest that inhibition of neurotransmitter uptake can lead to the clinical manifestations of hyponatremia. Decreasing of sodium concentration down to 92 mM in incubation medium, which corresponds to lowering the osmolarity down to 230 mOsm/l, leads to a 45% decrease in glutamate uptake and a 46% decrease in gamma-aminobutyric acid (GABA) uptake. However, this effect was mediated by the nonspecific lowering of osmolarity rather than by decreasing sodium concentration. Hypotonic shock was able to reduce glutamate uptake in the presence of protein kinase inhibitors staurosporine and genistein, the phosphatase inhibitor okadaic acid, the phosphatidylinositol 3-kinase inhibitor wortmannin, and cytoskeleton modulators colchicine and cytochalasin B. Therefore, we suggest that intracellular signaling is not mediating the effect of osmolarity reduction on neurotransmitter uptake.

Download full-text PDF

Source
http://dx.doi.org/10.1023/b:nere.0000035799.79422.d1DOI Listing

Publication Analysis

Top Keywords

hypotonic shock
8
gaba uptake
8
neurotransmitter uptake
8
decreasing sodium
8
sodium concentration
8
lowering osmolarity
8
glutamate uptake
8
uptake
7
influence hypotonic
4
shock glutamate
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!