Time-dependent changes in the cell death mode from apoptosis to necrosis were studied in cultured 143B cells treated with menadione, an anti-cancerous drug, excluding a possible involvement of "secondary necrosis." The population of apoptotic cells judged by FITC-Annexin V and propidium iodide (PI) double staining reached its maximum at 6 hours after 100 microM menadione treatment followed by an abrupt decrease thereafter, while that of necrotic cells continuously increased reaching 90% at 24 hours. Electron microscopically, cells attached to the culture dish at 6 hours after the treatment consisted of two different types of cells: cells with typical apoptotic features occupying the major population and those with condensed nuclei and swollen cytoplasm. Cells attached to the culture dish at 8 hours after the treatment consisted exclusively of those with condensed nuclei and swollen cytoplasm. Mitochondria in these cells showed various structural changes: those swollen to various degrees with deposition of flocculent densities, or those with highly condensed matrix. Distinct decreases both in intracellular levels of ATP and caspase-3-like activities and remarkable elevations of intracellular levels of superoxide, which were partly suppressed by NAD(P)H oxidase inhibitors, occurred at 6 hours after the treatment. These results may suggest that distinct increases of the intracellular level of superoxide derived from plasma membrane NAD(P)H oxidase besides that from mitochondria have triggered the transition of cell death mode from apoptosis to necrosis. Transition of highly condensed mitochondria to extremely swollen ones may reflect necrotic processes in menadione-treated cells. The present study strongly suggests that time-dependent study is essential using the electron microscopic technique to analyze detailed processes in the changes of the cell death mode.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jemt.20083 | DOI Listing |
Endocrine
January 2025
Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, India.
The word "cancer" evokes myriad emotions, ranging from fear and despair to hope and determination. Cancer is aptly defined as a complex and multifaceted group of diseases that has unapologetically led to the loss of countless lives and affected innumerable families across the globe. The battle with cancer is not only a physical battle, but also an emotional, as well as a psychological skirmish for patients and for their loved ones.
View Article and Find Full Text PDFMol Cell Biochem
January 2025
Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, P.O. Box: 14115-154, Tehran, Iran.
Ferroptosis is a novel, iron-dependent form of non-apoptotic cell death characterized by the accumulation of lipid reactive oxygen species (ROS) and mitochondrial shrinkage. It is closely associated with the onset and progression of various diseases, especially cancer, at all stages, making it a key focus of research for developing therapeutic strategies. Numerous studies have explored the role of microRNAs (miRNAs) in regulating ferroptosis by modulating the expression of critical genes involved in iron metabolism and lipid peroxidation.
View Article and Find Full Text PDFCancer Epidemiol Biomarkers Prev
January 2025
Peking University Cancer Hospital, Beijing, China.
Background: Esophageal squamous cell carcinoma (ESCC) exhibits a long latency period and has a significant geographical disparity in incidence, which underscores the need for models predicting the long-term absolute risk adaptable to regional disease burden.
Methods: 31,883 participants in a large-scale population-based screening trial (Hua County, China) were enrolled to develop the model. Severe dysplasia and above (SDA) identified at screening or follow-up were defined as the outcome.
Immun Inflamm Dis
January 2025
Department of Medical Biochemistry, Institute of Health, Dambi Dollo University, Dambi Dolo, Ethiopia.
Background: The pathomechanism of blast traumatic brain injury (TBI) and blunt TBI is different. In blast injury, evidence indicates that a single blast exposure can often manifest long-term neurological impairments. However, its pathomechanism is still elusive, and treatments have been symptomatic.
View Article and Find Full Text PDFCancer Med
February 2025
Department of General Surgery, The First People's Hospital of Baiyin (Third Affiliated Hospital of Gansu University of Traditional Chinese Medicine), Baiyin, China.
Background: Photodynamic therapy (PDT) is a noninvasive cancer treatment that works by using light to stimulate the production of excessive cytotoxic reactive oxygen species (ROS), which effectively eliminates tumor cells. However, the therapeutic effects of PDT are often limited by tumor hypoxia, which prevents effective tumor cell elimination. The oxygen (O) consumption during PDT can further exacerbate hypoxia, leading to post-treatment adverse events.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!