Atrial natriuretic peptide dose-dependently inhibits pressure overload-induced cardiac remodeling.

Hypertension

Vascular Biology and Hypertension Program, Division of Cardiovascular Disease, University of Alabama at Birmingham, ZRB 1024, 703 19th St S, Birmingham, AL 35294, USA.

Published: November 2004

We hypothesized that a single copy of the proatrial natriuretic peptide gene (Nppa+/-) would not be adequate to protect heterozygous mice against exaggerated cardiac hypertrophy and remodeling after pressure-overload stress. Nppa+/+, Nppa+/-, and Nppa-/- mice were subjected to sham surgery or transverse aortic constriction and fed a basal salt diet. Heart weight varied inversely with Nppa gene load by 1 week after either surgery. Fractional shortening did not differ among genotypes at baseline and fell in Nppa-/- mice only after transverse aortic constriction. There was a graded response in collagen deposition related to atrial natriuretic peptide (ANP) expression after either surgery. A robust interstitial and perivascular fibrosis was noted in Nppa-/- and Nppa+/- but not in Nppa+/+ mice after transverse aortic constriction. Our findings are consistent with a growing body of evidence that ANP is an important modulator of cardiac hypertrophy and remodeling in response to hemodynamic stress. The observation that partial ANP deficiency results in exaggerated hypertrophy and remodeling after pressure overload suggests that genetic or environmental variation in ANP levels may play a role in the development of cardiac hypertrophy, remodeling, and failure in humans.

Download full-text PDF

Source
http://dx.doi.org/10.1161/01.HYP.0000144801.09557.4cDOI Listing

Publication Analysis

Top Keywords

hypertrophy remodeling
16
natriuretic peptide
12
cardiac hypertrophy
12
transverse aortic
12
aortic constriction
12
atrial natriuretic
8
nppa-/- mice
8
mice transverse
8
remodeling
5
peptide dose-dependently
4

Similar Publications

Wnt/β-catenin and notch signaling pathways in cardiovascular disease: Mechanisms and therapeutics approaches.

Pharmacol Res

December 2024

Pathologie, School for Cardiovascular Diseases, Fac. Health, Medicine and Life Sciences, Maastricht university, MUMC,  the Netherland. Electronic address:

Wnt and Notch signaling pathways play crucial roles in the development and homeostasis of the cardiovascular system. These pathways regulate important cellular processes in cardiomyocytes, endothelial cells, and smooth muscle cells, which are the key cell types involved in the structure and function of the heart and vasculature. During embryonic development, Wnt and Notch signaling coordinate cell fate specification, proliferation, differentiation, and morphogenesis of the heart and blood vessels.

View Article and Find Full Text PDF

STATE OF CARDIOVASCULAR SYSTEM IN SERVICEMEN OF UKRAINE ARMED FORCES AND EMERGENCY WORKERS OF THE CHORNOBYL ACCIDENT. COMPARATIVE ANALYSIS.

Probl Radiac Med Radiobiol

December 2024

State Institution «National Research Center of Radiation Medicine, Hematology and Oncology of the National Academy of Medical Sciences of Ukraine», 53 Yuriia Illienka Str., Kyiv, 04050, Ukraine.

Objective: To conduct a comparative analysis of cardiovascular system state in emergency workers (EW) of theaccident at the Chornobyl NPP and servicemen (SM) of Ukraine Armed Forces (UAF) who took part in the fightagainst russian military aggression, and to assess the role of military service factors on the development of cardiac pathology.

Materials And Methods: The study included 81 male EW and 161 SM of UAF, who were examined and treated in thecardiology department of NRCRMHO from 2022 to 2024. The average age of the surveyed EW was (56.

View Article and Find Full Text PDF

Succinate Regulates Exercise-Induced Muscle Remodelling by Boosting Satellite Cell Differentiation Through Succinate Receptor 1.

J Cachexia Sarcopenia Muscle

February 2025

Clinical Nutrition Service Center, Department of General Surgery, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China.

Background: Skeletal muscle remodelling can cause clinically important changes in muscle phenotypes. Satellite cells (SCs) myogenic potential underlies the maintenance of muscle plasticity. Accumulating evidence shows the importance of succinate in muscle metabolism and function.

View Article and Find Full Text PDF

Cardiac remodeling encompasses structural alterations such as hypertrophy, fibrosis, and dilatation, alongside numerous cellular and molecular functional aberrations, constituting a pivotal process in the advancement of heart failure (HF). 4-Hydroxychalcone (4-HCH) is a class of naturally occurring compounds with variable phenolic structures, and has demonstrated the preventive efficacy in hyperaldosteronism, inflammation and renal injury. However, the role of 4-HCH in the regulation of cardiac remodeling remains uncertain.

View Article and Find Full Text PDF

Background: Increased cardiac after load and multiple non-hemodynamic stimuli implicate in adverse left ventricular remodeling (LVR). This is particularly identifiable in treatment-resistant and secondary hypertension contexts, like primary hyperaldosteronism (PA), however little data exists on post-treatment residual LVR in these individuals.

Methods: Cardiac magnetic resonance (CMR) with T1 mapping were performed in 14 patients with treated PA matched with 15 treated patients with primary hypertension (PH) and 15 healthy individuals.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!