The P23T cataract mutation causes loss of solubility of folded gammaD-crystallin.

J Mol Biol

Department of Crystallography, Birkbeck College, Malet Street, London WC1E 7HX, UK.

Published: October 2004

AI Article Synopsis

  • Mutations in the gammaD-crystallin gene can cause different types of congenital cataracts, with the P23T mutation specifically linked to several forms.
  • Research shows that the P23T mutant is much less soluble than the wild-type gammaD protein, while another mutation (P23S) has medium solubility.
  • The P23T mutation increases beta-sheet content slightly, but overall, the stability of the protein does not seem affected, indicating that solubility issues, not stability loss, lead to cataract formation.

Article Abstract

Mutations in the human gammaD-crystallin gene have been linked to several types of congenital cataracts. In particular, the Pro23 to Thr (P23T) mutation of human gammaD crystallin has been linked to cerulean, lamellar, coralliform, and fasciculiform congenital cataracts. We have expressed and purified wild-type human gammaD, P23T, and the Pro23 to Ser23 (P23S) mutant. Our measurements show that P23T is significantly less soluble than wild-type human gammaD, with P23S having an intermediate solubility. Using synchrotron radiation circular dichroism spectroscopy, we have determined that the P23T mutant has a slightly increased content of beta-sheet, which may be attributed to the extension of an edge beta-strand due to the substitution of Pro23 with a residue able to form hydrogen bonds. Neither of the point mutations appears to have reduced the thermal stability of the protein significantly, nor its resistance to guanidine hydrochloride-induced unfolding. These results suggest that insolubility, rather than loss of stability, is the primary basis for P23T congenital cataracts.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jmb.2004.08.050DOI Listing

Publication Analysis

Top Keywords

congenital cataracts
12
human gammad
12
wild-type human
8
p23t
6
p23t cataract
4
cataract mutation
4
mutation loss
4
loss solubility
4
solubility folded
4
folded gammad-crystallin
4

Similar Publications

Anterior segment dysgenesis (ASD) defines a collection of congenital eye disorders that affect structures within the anterior segment of the eye. Mutations in genes that initiate and regulate the complex pathways involved in eye development can cause a spectrum of disorders such as ASD, congenital cataracts and corneal opacity. In South Africa, causes of ASD are poorly understood with few studies looking at the possible genetic basis for these disorders.

View Article and Find Full Text PDF

TBC1D20 coordinates vesicle transport and actin remodeling to regulate ciliogenesis.

J Cell Biol

April 2025

Department of Genetics and Cell Biology, College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China.

TBC1D20 deficiency causes Warburg Micro Syndrome in humans, characterized by multiple eye abnormalities, severe intellectual disability, and abnormal sexual development, but the molecular mechanisms remain unknown. Here, we identify TBC1D20 as a novel Rab11 GTPase-activating protein that coordinates vesicle transport and actin remodeling to regulate ciliogenesis. Depletion of TBC1D20 promotes Rab11 vesicle accumulation and actin deconstruction around the centrosome, facilitating the initiation of ciliogenesis even in cycling cells.

View Article and Find Full Text PDF

Anterior segment dysgenesis exerts its influence on a diverse array of ocular structures, encompassing the cornea, iris, ciliary body, anterior chamber and lens. We present a 20-month-old boy with bilateral corneal opacity. The visual acuity (VA) was 6/480 in both eyes.

View Article and Find Full Text PDF

Background: Nance-Horan syndrome (NHS) is a rare, frequently underdiagnosed, X-linked disease caused by mutations in the NHS gene. In males, it causes bilateral dense pediatric cataracts, dental anomalies, and facial dysmorphisms. Females traditionally have a more subtle phenotype with discrete lens opacities as an isolated feature.

View Article and Find Full Text PDF

Syndromic Retinitis Pigmentosa: A Narrative Review.

Vision (Basel)

January 2025

Sztárai Institute, University of Tokaj, 3950 Sárospatak, Hungary.

Retinitis pigmentosa (RP) encompasses inherited retinal dystrophies, appearing either as an isolated eye condition or as part of a broader systemic syndrome, known as syndromic RP. In these cases, RP includes systemic symptoms impacting other organs, complicating diagnosis and management. This review highlights key systemic syndromes linked with RP, such as Usher, Bardet-Biedl, and Alström syndromes, focusing on genetic mutations, inheritance, and clinical symptoms.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!