Post-translational modifications are essential for the proper function of many proteins in the cell. The attachment of an isoprenoid lipid (a process termed prenylation) by protein farnesyltransferase (FTase) or geranylgeranyltransferase type I (GGTase-I) is essential for the function of many signal transduction proteins involved in growth, differentiation, and oncogenesis. FTase and GGTase-I (also called the CaaX prenyltransferases) recognize protein substrates with a C-terminal tetrapeptide recognition motif called the Ca1a2X box. These enzymes possess distinct but overlapping protein substrate specificity that is determined primarily by the sequence identity of the Ca1a2X motif. To determine how the identity of the Ca1a2X motif residues and sequence upstream of this motif affect substrate binding, we have solved crystal structures of FTase and GGTase-I complexed with a total of eight cognate and cross-reactive substrate peptides, including those derived from the C termini of the oncoproteins K-Ras4B, H-Ras and TC21. These structures suggest that all peptide substrates adopt a common binding mode in the FTase and GGTase-I active site. Unexpectedly, while the X residue of the Ca1a2X motif binds in the same location for all GGTase-I substrates, the X residue of FTase substrates can bind in one of two different sites. Together, these structures outline a series of rules that govern substrate peptide selectivity; these rules were utilized to classify known protein substrates of CaaX prenyltransferases and to generate a list of hypothetical substrates within the human genome.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jmb.2004.08.056 | DOI Listing |
Dis Model Mech
May 2024
Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA.
Prenylated proteins are prevalent in eukaryotic biology (∼1-2% of proteins) and are associated with human disease, including cancer, premature aging and infections. Prenylated proteins with a C-terminal CaaX sequence are targeted by CaaX-type prenyltransferases and proteases. To aid investigations of these enzymes and their targets, we developed Saccharomyces cerevisiae strains that express these human enzymes instead of their yeast counterparts.
View Article and Find Full Text PDFRSC Chem Biol
November 2023
Department of Chemistry, University of Minnesota Minneapolis MN 55455 USA
Protein lipidation is a post-translational modification that confers hydrophobicity on protein substrates to control their cellular localization, mediate protein trafficking, and regulate protein function. In particular, protein prenylation is a C-terminal modification on proteins bearing canonical motifs catalyzed by prenyltransferases. Prenylated proteins have been of interest due to their numerous associations with various diseases.
View Article and Find Full Text PDFbioRxiv
September 2023
Department of Biochemistry and Molecular Biology, University of Georgia.
The C-terminal CaaX sequence (cysteine-aliphatic-aliphatic-any of several amino acids) is subject to isoprenylation on the conserved cysteine and is estimated to occur in 1-2% of proteins within yeast and human proteomes. Recently, non-canonical CaaX sequences in addition to shorter and longer length CaX and CaaaX sequences have been identified that can be prenylated. Much of the characterization of prenyltransferases has relied on the yeast system because of its genetic tractability and availability of reporter proteins, such as the -factor mating pheromone, Ras GTPase, and Ydj1 Hsp40 chaperone.
View Article and Find Full Text PDFJ Biol Chem
November 2023
Department of Chemistry, Saint Louis University, Saint Louis, Missouri, USA; Department of Chemistry and Biochemistry, The University of Toledo, Toledo, Ohio, USA; Institute for Drug and Biotherapeutic Innovation, Saint Louis University, Saint Louis, Missouri, USA. Electronic address:
Prenylation is an irreversible post-translational modification that supports membrane interactions of proteins involved in various cellular processes, including migration, proliferation, and survival. Dysregulation of prenylation contributes to multiple disorders, including cancers and vascular and neurodegenerative diseases. Prenyltransferases tether isoprenoid lipids to proteins via a thioether linkage during prenylation.
View Article and Find Full Text PDFbioRxiv
July 2023
Department of Chemistry, Saint Louis University, Saint Louis, MO 63103, USA.
Prenylation is a universal and irreversible post-translational modification that supports membrane interactions of proteins involved in various cellular processes, including migration, proliferation, and survival. Thus, dysregulation of prenylation contributes to multiple disorders, including cancers, vascular diseases, and neurodegenerative diseases. During prenylation, prenyltransferase enzymes tether metabolically produced isoprenoid lipids to proteins via a thioether linkage.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!