GABA(A) receptors have structural and functional homology with a super-family of cys-loop ligand-gated ion channel receptors including the nicotinic acetylcholine receptors. Amino acid residues involved in ligand-binding pockets are homologous among super-family members, leading to the multiple-loop model of binding sites situated at subunit interfaces, validated by structural studies on the nicotinic acetylcholine receptor and water-soluble snail acetylcholine binding protein. This article will briefly review the literature on the agonist binding sites on the receptor super-family, and then describe the current situation for attempts to identify sites for allosteric modulators on the GABA(A) receptors. A combination of mutagenesis and photoaffinity labeling with anesthetic ligands has given some leads in this endeavor. Current work by others and ourselves focuses on three putative sites for modulators: (1) within the ion channel domain TM2, near the extracellular end; (2) the agonist binding sites and homologous pockets at other subunit interfaces of the pentameric receptor; and (3) on the linker region stretching from the agonist site loop C to the top of the TM1 region. It is likely that concrete structural information will be forthcoming soon.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bcp.2004.07.026 | DOI Listing |
Brain Res Bull
January 2025
Department of Neurology, the Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 1, Minde Road, 330006 Nanchang, Jiangxi, China. Electronic address:
Wogonin, an O-methylated flavonoid extracted from Scutellaria baicalensis, has demonstrated profound neuroprotective effects in a range of central nervous system (CNS) diseases. This review elucidates the pharmacological mechanisms underlying the protective effects of wogonin in CNS diseases, including ischemic stroke, hemorrhagic stroke, traumatic brain injury, epilepsy, anxiety, neurodegenerative diseases, and CNS infections. Wogonin modulates key signaling pathways, such as the MAPK, NF-κB, and ROS pathways, contributing to its anti-inflammatory, antioxidant, and antiapoptotic properties.
View Article and Find Full Text PDFSci Adv
January 2025
Laboratory for Biofunction Dynamics Imaging, RIKEN Center for Biosystems Dynamics Research, 6-7-3 Minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan.
Placebo analgesia is caused by inactive treatment, implicating endogenous brain function involvement. However, the neurobiological basis remains unclear. In this study, we found that μ-opioid signals in the medial prefrontal cortex (mPFC) activate the descending pain inhibitory system to initiate placebo analgesia in neuropathic pain rats.
View Article and Find Full Text PDFJ Med Chem
January 2025
Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, Copenhagen DK-2100, Denmark.
GABA receptors (GABARs) are the major elements of inhibitory neurotransmission in the central nervous system (CNS). They are established targets for regulation by endogenous brain neuroactive steroids (NASs) such as pregnanolone. However, the complexity of de novo synthesis of NAS derivatives has hindered attempts to circumvent the principal limitations of using endogenous NASs, including selectivity and limited oral bioavailability.
View Article and Find Full Text PDFIBRO Neurosci Rep
December 2024
Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
Previous investigations have revealed the role of GABAergic and serotonergic systems in the modulation of pain behavior. This research aimed to examine the effects of intracerebroventricular (i.c.
View Article and Find Full Text PDFDrug Des Devel Ther
January 2025
Department of Anesthesiology, The Affiliated Hospital of Qingdao University, Qingdao, People's Republic of China.
Introduction: The mechanism of remimazolam, a benzodiazepine that activates γ-aminobutyric acid a (GABAa) receptors, in cerebral ischemia/reperfusion (I/R) injury is not well understood. Therefore, we explored whether remimazolam activates protein kinase B (AKT)/glycogen synthase kinase-3β (GSK-3β)/nuclear factor erythroid 2-related factor 2 (NRF2) to attenuate brain I/R injury in transcerebral I/R-injured rats and transoxygenic glucose deprivation/reperfusion (OGD/R)-injured SY5Y cells.
Material And Methods: Remimazolam was added at the beginning of cell and rat reperfusion, and the PI3K/AKT inhibitor LY294002 was added to inhibit the AKT/GSK-3β/NRF2 pathway 24 h before cellular OGD/R treatment and 30 min before rat brain I/R treatment.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!