The objective of the present study was to compare two configurations of the hepatocyte model namely suspensions (SH) and conventional primary cultures (CPC) for their ability to predict the hepatic clearance in vivo in the rat and, to investigate the impact of serum on the prediction accuracy. The metabolic competences of several cytochrome P450 isoenzymes were investigated both in CPC and SH in the presence or absence of serum. Under the same conditions, the in vitro intrinsic clearance of six test compounds metabolised by a variety of phase I and phase II enzymes (antipyrine, RO-X, mibefradil, midazolam, naloxone and oxazepam) were derived from Vmax/Km scaled up to the corresponding in vivo hepatic metabolic clearance. CYP activities were shown to be stable in both CPC and SH for up to 6 h of incubation, except for the CYP 3A1 activity that decreased in CPC even in the presence of serum. Moreover, the clearances predicted from SH in the presence of serum were closer to the in vivo values than those obtained from CPC. SH represent a convenient model to assess the hepatic metabolism of xenobiotics, the presence of serum in the incubation medium significantly improved in several instances the quality of the predictions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ejps.2004.07.007 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!