A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Membrane permeation characteristics of abacavir in human erythrocytes and human T-lymphoblastoid CD4+ CEM cells: comparison with (-)-carbovir. | LitMetric

Membrane permeation characteristics of abacavir in human erythrocytes and human T-lymphoblastoid CD4+ CEM cells: comparison with (-)-carbovir.

Biochem Pharmacol

Division of Medicinal Chemistry, GlaxoSmithKline, Research Triangle Park, NC 27709, USA.

Published: November 2004

Abacavir, (-)-(1S,4R)-4-[2-amino-6-(cyclopropylamino)-9H-purin-9-yl]-2-cyclopentene-1-methanol, is a novel purine carbocyclic nucleoside analogue that has been approved by the FDA for the treatment of HIV (as Ziagen trade mark [abacavir sulfate]). Chemically, abacavir and (-)-carbovir (CBV) differ only at the 6-position of the purine ring; abacavir contains a cyclopropylamino moiety in place of the 6-lactam functionality of CBV. Intracellularly both are ultimately metabolized to CBV triphosphate. We compared the membrane permeation characteristics of these two compounds at 20 degrees C in human erythrocytes and in human T-lymphoblastoid CD4+ CEM cells, using a "papaverine-stop" assay. In erythrocytes, abacavir influx was rapid, nonsaturable (rate constant=200 pmol/s/mM/microl cell water), and unaffected by inhibitors of nucleoside or nucleobase transport. CBV influx was slow, saturable, strongly inhibited by adenine or hypoxanthine, and occurred via both the nucleobase carrier (Vmax=0.67 pmol/s/microl cell water; Km=50 microM) and the nucleoside carrier (Vmax=0.47 pmol/s/microl cell water; Km=440 microM). Similar qualitative results were obtained with CD4+ CEM cells, although CBV influx rates were somewhat higher and abacavir influx rates lower, compared to the corresponding rates in erythrocytes. Equilibrium studies further revealed that both compounds are concentrated intracellularly, but nonmetabolically, in both cell types, apparently due to cytosolic protein binding (absent in erythrocyte ghosts). We conclude that, in both cell types, while CBV influx is slow and carrier-dependent, abacavir influx occurs rapidly by nonfacilitated diffusion. The membrane permeation characteristics of abacavir are consistent with its superior oral bioavailability and its impressive ability to penetrate the central nervous system.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bcp.2004.06.025DOI Listing

Publication Analysis

Top Keywords

membrane permeation
12
permeation characteristics
12
cd4+ cem
12
cem cells
12
abacavir influx
12
cell water
12
cbv influx
12
abacavir
8
characteristics abacavir
8
human erythrocytes
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!