The mutational spectrum of bleomycin was compared with the spontaneous mutational spectrum in lacZ mouse kidney. Mice were treated with four 20 mg/kg of doses of bleomycin over a two-week period, leading to a mutant fraction several times greater than that of controls. The major class of bleomycin-induced mutations consisted of small deletions, in particular -1 deletions at AT base pairs and hot spots for deletions at 5'-GTC-3' sequences. Smaller, but significant fractions of GC > AT followed by GC > TA substitutions were also observed. In untreated mice, the major class of mutations consisted of GC > AT substitutions followed by GC > TA mutations, and a much smaller fraction of deletions. Other than the specificity of bleomycin for AT base pairs and the 5'-GTC-3' hotspots, the mutational spectrum of bleomycin in mice is similar to that reported for ionizing radiation. However, bleomycin initially mediates the formation of oxidized DNA via reduction of molecular oxygen, as opposed to the radiolysis of water. In this respect mutagenesis induced by bleomycin may be more similar to that induced by endogenous reactive oxygen species (ROS) than mutagenesis induced by ionizing radiation. If bleomycin-induced mutagenesis is an appropriate model for mutagenesis induced by ROS, then, based on the difference between the mutational spectrum of bleomycin and spontaneous mutagenesis, the latter appears not to result predominantly from ROS, at least in mouse kidney.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.mrfmmm.2004.04.012DOI Listing

Publication Analysis

Top Keywords

mutational spectrum
24
spectrum bleomycin
16
mouse kidney
12
mutagenesis induced
12
bleomycin
8
lacz mouse
8
reactive oxygen
8
oxygen species
8
major class
8
mutations consisted
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!