A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

RecN and RecG are required for Escherichia coli survival of Bleomycin-induced damage. | LitMetric

RecN and RecG are required for Escherichia coli survival of Bleomycin-induced damage.

Mutat Res

Biological Engineering Division, Department of Chemistry, Massachusetts Institute of Technology, Rm. 56-689, 77 Massachusetts Avenue, Cambridge 02139, USA.

Published: October 2004

The sensitivity of a panel of DNA repair-defective bacterial strains to BLM was investigated. Escherichia coli recA cells were far more sensitive than were uvrA, dam-3, and mutM mutY strains, underscoring the importance of RecA to survival. Strains recBCD and recN, which lack proteins required for double strand break (DSB) repair, were highly sensitive to BLM, while recF cells were not. The requirement for DSB-specific enzymes supports the hypothesis that DSBs are the primary cause of bleomycin cytotoxicity. The acute sensitivity of recN cells was comparable to that of recA, implying a central role for the RecN protein in BLM lesion repair. The Holliday junction processing enzymes RecG and RuvC were both required for BLM survival. The recG ruvC double mutant was no more sensitive than either mutation alone, suggesting that both enzymes participate in the same pathway. Surprisingly, ruvAB cells were no more sensitive than wildtype, implying that RuvC is able to perform its role without RuvAB. This observation contrasts with current models of recombination in which RuvA, B, and C function as a single complex. The most straightforward explanation of these results is that DSB repair involves a structure that serves as a good substrate for RecG, and not RuvAB.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.mrfmmm.2004.04.011DOI Listing

Publication Analysis

Top Keywords

escherichia coli
8
cells sensitive
8
dsb repair
8
recg ruvc
8
recn
4
recn recg
4
recg required
4
required escherichia
4
coli survival
4
survival bleomycin-induced
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!