A method of supervised classification using two available structure templates was applied to investigate the possible heterogeneity existing in a large cryo-EM dataset of an Escherichia coli 70S ribosome-EF-G complex. Two subpopulations showing the ribosome in distinct conformational states, related by a ratchet-like rotation of the 30S subunit with respect to the 50S subunit, were extracted from the original dataset. The possible presence of additional intermediate states is discussed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jsb.2004.02.008 | DOI Listing |
While the most widely used CRISPR-Cas enzyme is the Cas9 endonuclease (Cas9), it exhibits single-turnover enzyme kinetics which leads to long residence times on product DNA. This blocks access to DNA repair machinery and acts as a major bottleneck during CRISPR-Cas9 gene editing. Although Cas9 can eventually be forcibly removed by extrinsic factors (translocating polymerases, helicases, chromatin modifying complexes, etc), the mechanisms contributing to Cas9 dissociation following cleavage remain poorly understood.
View Article and Find Full Text PDFBioinform Adv
November 2024
Department of Computer Science, Old Dominion University, Norfolk, VA 23529, United States.
Summary: Although multiple neural networks have been proposed for detecting secondary structures from medium-resolution (5-10 Å) cryo-electron microscopy (cryo-EM) maps, the loss functions used in the existing deep learning networks are primarily based on cross-entropy loss, which is known to be sensitive to class imbalances. We investigated five loss functions: cross-entropy, Focal loss, Dice loss, and two combined loss functions. Using a U-Net architecture in our DeepSSETracer method and a dataset composed of 1355 box-cropped atomic-structure/density-map pairs, we found that a newly designed loss function that combines Focal loss and Dice loss provides the best overall detection accuracy for secondary structures.
View Article and Find Full Text PDFNat Methods
January 2025
Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA, USA.
While advances in single-particle cryo-EM have enabled the structural determination of macromolecular complexes at atomic resolution, particle orientation bias (the 'preferred' orientation problem) remains a complication for most specimens. Existing solutions have relied on biochemical and physical strategies applied to the specimen and are often complex and challenging. Here, we develop spIsoNet, an end-to-end self-supervised deep learning-based software to address map anisotropy and particle misalignment caused by the preferred-orientation problem.
View Article and Find Full Text PDFJ Struct Biol
December 2024
Molecular Medicine Program, The Hospital for Sick Children, Toronto M5G 0A4, Canada; Department of Medical Biophysics, The University of Toronto, Toronto M5G 1L7, Canada; Department of Biochemistry, The University of Toronto, Toronto M5S 1A8, Canada. Electronic address:
Electron cryomicroscopy (cryo-EM) has recently allowed determination of near-atomic resolution structures of membrane proteins and protein complexes embedded in lipid vesicles. However, particle selection from electron micrographs of these vesicles can be challenging due to the strong signal contributed from the lipid bilayer. This challenge often requires iterative and laborious particle selection workflows to generate a dataset of high-quality particle images for subsequent analysis.
View Article and Find Full Text PDFbioRxiv
October 2024
Department of Biology, Massachusetts Institute of Technology, Cambridge, MA.
Cryogenic electron microscopy (cryo-EM) has the potential to capture snapshots of proteins in motion and generate hypotheses linking conformational states to biological function. This potential has been increasingly realized by the advent of machine learning models that allow 100s-1,000s of 3D density maps to be generated from a single dataset. How to identify distinct structural states within these volume ensembles and quantify their relative occupancies remain open questions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!