A new method for fully automated segmentation of white matter lesions (WMLs) on cranial MR imaging is presented. The algorithm uses five types of regular MRI-scans. It is based on a K-Nearest Neighbor (KNN) classification technique, which builds a feature space from voxel intensity features and spatial information. The technique generates images representing the probability per voxel being part of a WML. By application of thresholds on these probability maps binary segmentations can be produced. ROC-curves show that the segmentations achieve a high sensitivity and specificity. Three similarity measures, the similarity index (SI), the overlap fraction (OF) and the extra fraction (EF), are calculated for evaluation of the results and determination of the optimal threshold on the probability map. Investigation of the relation between the total lesion volume and the similarity measures shows that the method performs well for lesions larger than 2 cc. The maximum SI per patient is correlated to the total WML volume. No significant relation between the lesion volume and the optimal threshold has been observed. The probabilistic equivalents of the SI, OF en EF (PSI, POF and PEF) allow direct evaluation of the probability maps, which provides a strong tool for comparison of different classification results. A significant correlation between the lesion volume and the PSI and the PEF has been noticed. This method for automated WML segmentation is applicable to lesions of different sizes and shapes, and reaches an accuracy that is comparable to existing methods for multiple sclerosis lesion segmentation. Furthermore, it is suitable for detection of WMLs in large and longitudinal population studies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.media.2004.06.019 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!