We have isolated and characterized three adjacent Saccharomyces douglasii genes that share remarkable structural homology (97% amino acid sequence identity) with Saccharomyces cerevisiae ARR1 (ACR1), ARR2 (ACR2) and ARR3 (ACR3) genes involved in arsenical resistance. The ARR2 and ARR3 genes encoding the cytoplasmic arsenate reductase and the plasma membrane arsenite transporter are functionally interchangeable in both yeast species. In contrast, a single copy of S. douglasii ARR1 gene is not sufficient to complement the arsenic hypersensitivity of a S. cerevisiae mutant lacking the transcriptional activator Arr1p. This inability may be related to a deletion of a 35-bp sequence including the putative Yap-binding element in the ARR1 promoter of S. douglasii. Different mechanisms of regulation of ARR1 genes expression may therefore explain the increased tolerance of S. douglasii to arsenic in comparison with S. cerevisiae. The apparent duplication of the ARR gene cluster in the S. douglasii genome may constitute another factor contributing to the observed differences in arsenic sensitivity. Comparison of ARR genes from the genomes of several yeast species indicates that they are located in subtelomeric regions undergoing rapid evolution involving large-scale genomic rearrangements.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.femsyr.2004.03.002 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!