The solution molecular structure and the electronic and magnetic properties of the heme pocket of the cyanomet complex of the isolated beta-chain of human adult hemoglobin, HbA, have been investigated by homonuclear 2D (1)H NMR in order to assess the extent of assignments allowed by (1)H NMR of a homo-tetrameric 65-kDa protein, to guide the future assignments of the heterotetrameric complex of HbA, and to compare the structure of the beta-chain to the crystallographically characterized complexes that contains the beta-chain. The target residues are those that exhibit significant (>|0.2| ppm) dipolar shifts, as predicted by a "preliminary" set of magnetic axes determined from a small set of easily assigned active site residues. All 104 target residues ( approximately 70% of total) were assigned by taking advantage of the temperature dependence predicted by the "preliminary" magnetic axes for the polypeptide backbone; they include all residues proposed to play a significant role in modulating the ligand affinity in the tetramer HbA. Left unassigned are the A-helix, the end of the G-helix and the beginning of the H-helix where dipolar shifts are less than |0.2| ppm. These comprehensive assignments allow the determination of a robust set of orientation and anisotropies of the paramagnetic susceptibility tensor that leads to quantitative interpretation of the dipolar shifts of the beta-chain in terms of the crystal coordinates of the beta-subunit in ligated HbA which, in turn, confirms a largely conserved molecular structure of the isolated beta-chain relative to that in the intact R-state HbA. The major magnetic axis, which is correlated with the tilt of the Fe-CN unit, is tilted approximately 10 degrees from the heme normal so that the Fe-CN unit is tilted toward the beta-meso-H in a fashion remarkably similar to the Fe-CO tilt in the beta-subunit of HbCO. It is concluded that a set of "preliminary" magnetic axes and the use of variable temperature 2D NMR spectra are crucial to effective assignments in the tetrameric cyanomet beta-chain and that this approach should be similarly effective in HbA.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbapap.2004.06.003DOI Listing

Publication Analysis

Top Keywords

molecular structure
12
dipolar shifts
12
magnetic axes
12
active site
8
magnetic properties
8
cyanomet complex
8
complex isolated
8
beta-chain human
8
human adult
8
adult hemoglobin
8

Similar Publications

Aerolysin Nanopore Electrochemistry.

Acc Chem Res

January 2025

Molecular Sensing and Imaging Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.

ConspectusIons are the crucial signaling components for living organisms. In cells, their transportation across pore-forming membrane proteins is vital for regulating physiological functions, such as generating ionic current signals in response to target molecule recognition. This ion transport is affected by confined interactions and local environments within the protein pore.

View Article and Find Full Text PDF

Background: Breast cancer remains a significant global health challenge, requiring innovative therapeutic strategies. In silico methods, which leverage computational tools, offer a promising pathway for vaccine development. These methods facilitate antigen identification, epitope prediction, immune response modelling, and vaccine optimization, accelerating the design process.

View Article and Find Full Text PDF

Multifunctional Graphdiyne Enables Efficient Perovskite Solar Cells via Anti-Solvent Additive Engineering.

Nanomicro Lett

January 2025

CAS Key Laboratory of Organic Solids, Institute of Chemistry, Beijing National Laboratory for Molecular Sciences, Chinese Academy of Sciences, Beijing, 100049, People's Republic of China.

Finding ways to produce dense and smooth perovskite films with negligible defects is vital for achieving high-efficiency perovskite solar cells (PSCs). Herein, we aim to enhance the quality of the perovskite films through the utilization of a multifunctional additive in the perovskite anti-solvent, a strategy referred to as anti-solvent additive engineering. Specifically, we introduce ortho-substituted-4'-(4,4″-di-tert-butyl-1,1':3',1″-terphenyl)-graphdiyne (o-TB-GDY) as an AAE additive, characterized by its sp/sp-cohybridized and highly π-conjugated structure, into the anti-solvent.

View Article and Find Full Text PDF

In silico screening and immunogenic features of putative tick cement protein PA107 from Ixodes ricinus tick.

Exp Appl Acarol

January 2025

Group for Medical Entomology, Centre of Excellence for Food- and Vector-Borne Zoonoses, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia.

Tick salivary proteins are crucial for efficient and successful tick feeding. Most of them are still uncharacterized, especially those involved in the formation of tick cement. Tick salivary protein PA107 is a putative cement protein, which is transcribed in salivary glands during the initial phase of tick feeding.

View Article and Find Full Text PDF

An InDel variant in the promoter of the NAC transcription factor MdNAC18.1 plays a major role in apple fruit ripening.

Plant Cell

December 2024

Shenzhen Research Institute, State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, China.

A complex regulatory network governs fruit ripening, but natural variations and functional differentiation of fruit ripening genes remain largely unknown. Utilizing a genome-wide association study (GWAS), we identified the NAC family transcription factor MdNAC18.1, whose expression is closely associated with fruit ripening in apple (Malus × domestica Borkh.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!