Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
A polyclonal antibody (APP-Ab) raised against the extracellular domain of the beta-amyloid precursor protein (APP) triggers a marked neuronal cell death preceded by activation of Ca(2+)-dependent enzymes, neurite degeneration, oxidative stress and nuclear condensation [Mbebi et al. (2002) J. Biol. Chem., 277, 20979-20990]. We have investigated whether activation of APP by this antibody could promote cell death through cellular Ca2+ homeostasis alteration. We carried out time-lapse recordings of intracellular Ca2+ signals in cultured mice cortical neurons by means of a scanning confocal microscope. When applied in the presence of 2 mm external Ca2+, APP-Ab elicited a long-lasting elevation of the intracellular concentration of Ca2+ ([Ca2+]i). Experiments performed in the absence of external Ca2+ showed that APP-Ab triggers the release of Ca2+ from intracellular stores. The re-admission of external Ca2+ provides an additional rise of Ca2+ most likely through store-operated channels. A pretreatment of the cells with pertussis toxin, to inhibit the activity of Gi/Go proteins, or with the phospholipase C inhibitor, 3-nitrocoumarin, prevented both the APP-dependent elevation of Ca2+ as well as the APP-Ab-mediated cell death. Similarly, the store-operated channel inhibitors, 2-APB or SKF-96365 block both the APP-Ab-dependent Ca2+ entry and the APP-Ab-mediated cell death. Altogether, our data provide functional evidence that APP can perturb intracellular Ca2+ homeostasis by emptying intracellular Ca2+ stores and triggering Ca2+ entry through store-operated channels. In response to APP activation, the long-lasting elevation of [Ca2+]i due to an entry of Ca2+ via store-operated channels appears as a major event that leads to neuronal cell death.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1460-9568.2004.03680.x | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!