Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Bacterial and eukaryotic Cu,Zn superoxide dismutases show remarkable differences in the active site region and in their quaternary structure organization. We report here a functional comparison between four Cu,Zn superoxide dismutases from Gram-negative bacteria and the eukaryotic bovine enzyme. Our data indicate that bacterial dimeric variants are characterized by catalytic rates higher than that of the bovine enzyme, probably due to the solvent accessibility of their active site. Prokaryotic Cu,Zn superoxide dismutases also show higher resistance to hydrogen peroxide inactivation and lower HCO3- -dependent peroxidative activity. Moreover, unlike the eukaryotic enzyme, all bacterial variants are susceptible to inactivation by chelating agents and show variable sensitivity to proteolytic attack, with the E. coli monomeric enzyme showing higher rates of inactivation by EDTA and proteinase K. We suggest that differences between individual bacterial variants could be due to the influence of modifications at the dimer interface on the enzyme conformational flexibility.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1515/BC.2004.091 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!