The Analyzer of Space Plasma and Energetic Atoms (ASPERA) on board the Mars Express spacecraft found that solar wind plasma and accelerated ionospheric ions may be observed all the way down to the Mars Express pericenter of 270 kilometers above the dayside planetary surface. This is very deep in the ionosphere, implying direct exposure of the martian topside atmosphere to solar wind plasma forcing. The low-altitude penetration of solar wind plasma and the energization of ionospheric plasma may be due to solar wind irregularities or perturbations, to magnetic anomalies at Mars, or both.

Download full-text PDF

Source
http://dx.doi.org/10.1126/science.1101860DOI Listing

Publication Analysis

Top Keywords

solar wind
16
mars express
12
wind plasma
12
solar
5
mars
5
plasma
5
solar wind-induced
4
wind-induced atmospheric
4
atmospheric erosion
4
erosion mars
4

Similar Publications

Airborne wind energy is an emerging technology that can harness stronger and more consistent winds in higher altitudes using less mechanical and civil infrastructures than conventional wind energy systems. This article outlines a techno-economic study on using this technology for reverse osmosis seawater desalination in which a semi-permeable membrane process is used to remove salts and contaminants from water. To understand the techno-economic feasibility of such a system, this research work studies a 2 MW airborne wind-driven reverse osmosis plant.

View Article and Find Full Text PDF

The Voyager 2 flyby of Uranus in 1986 revealed an unusually oblique and off-centred magnetic field. This single in situ measurement has been the basis of our interpretation of Uranus's magnetosphere as the canonical extreme magnetosphere of the solar system; with inexplicably intense electron radiation belts and a severely plasma-depleted magnetosphere. However, the role of external forcing by the solar wind has rarely been considered in explaining these observations.

View Article and Find Full Text PDF

This paper presents a novel approach to modeling and controlling a solar photovoltaic conversion system(SPCS) that operates under real-time weather conditions. The primary contribution is the introduction of an uncertain model, which has not been published before, simulating the SPCS's actual functioning. The proposed robust control strategy involves two stages: first, modifying the standard Perturb and Observe (P&O) algorithm to generate an optimal reference voltage using real-time measurements of temperature, solar irradiance, and wind speed.

View Article and Find Full Text PDF

Techno-economic dataset for energy market and capacity payment co-optimization in the Dominican Republic's power market.

Data Brief

February 2025

Área de Ciencias Básicas, Instituto Tecnológico de Santo Domingo, 49 Los Próceres Avenue, Santo Domingo 10602, Dominican Republic.

The electric power industry has an impact on fossil fuel consumption, which must be considered in decarbonization strategies. Energy systems optimization modelling can be applied to evaluate policy scenarios in the power sector to accelerate energy transitions. These modelling tools need data to simulate different scenarios in the power system to clarify the design of energy policies.

View Article and Find Full Text PDF

Advanced microgrid optimization using price-elastic demand response and greedy rat swarm optimization for economic and environmental efficiency.

Sci Rep

January 2025

Department of Theoretical Electrical Engineering and Diagnostics of Electrical Equipment, Institute of Electrodynamics, National Academy of Sciences of Ukraine, Beresteyskiy, 56, Kyiv-57, Kyiv, 03680, Ukraine.

In this paper, a comprehensive energy management framework for microgrids that incorporates price-based demand response programs (DRPs) and leverages an advanced optimization method-Greedy Rat Swarm Optimizer (GRSO) is proposed. The primary objective is to minimize the generation cost and environmental impact of microgrid systems by effectively scheduling distributed energy resources (DERs), including renewable energy sources (RES) such as solar and wind, alongside fossil-fuel-based generators. Four distinct demand response models-exponential, hyperbolic, logarithmic, and critical peak pricing (CPP)-are developed, each reflecting a different price elasticity of demand.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!