DNA topoisomerase I (topo I) is involved in the regulation of DNA supercoiling, gene transcription, recombination, and DNA repair. The anticancer agent camptothecin specifically targets topo I. The mechanisms responsible for the regulation of topo I in cells, however, are not known. This study demonstrates that c-Abl-dependent phosphorylation up-regulates topo I activity. The c-Abl SH3 domain bound directly to the N-terminal region of topo I. The results demonstrate that c-Abl phosphorylated topo I at Tyr268 in core subdomain II. c-Abl-mediated phosphorylation of topo I Tyr268 in vitro and in cells conferred activation of the topo I isomerase function. Moreover, activation of c-Abl by treatment of cells with ionizing radiation was associated with c-Abl-dependent phosphorylation of topo I and induction of topo I activity. The functional significance of the c-Abl/topo I interaction is supported by the findings that (i) mutant topo I(Y268F) exhibited loss of c-Abl-induced topo I activity, and (ii) c-Abl-/- cells were deficient in the accumulation of protein-linked DNA breaks. In addition, loss of topo I phosphorylation in c-Abl-deficient cells conferred resistance to camptothecin-induced apoptosis. These findings collectively support a model in which c-Abl-mediated phosphorylation of topo I is functionally important to topo I activity and sensitivity to topo I poisons.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1074/jbc.M404396200 | DOI Listing |
Adv Rheumatol
December 2024
Department of Immunology & Molecular Medicine, Sher-I-Kashmir Institute of Medical Sciences (SKIMS), Soura, Srinagar, Jammu and Kashmir, 190011, India.
Background: As a master immune system regulator, transforming growth factor β1 (TGF-β1) is closely linked to the complicated pathophysiology and development of systemic sclerosis (SSc), a multisystem fibrotic disease.
Objective: We aim to evaluate the transcriptional levels of TGF-β1 mRNA in PBMCs, assess the TGF-β1 serum levels of SSc patients, and compare them with those of healthy subjects.
Methods: PBMCs were isolated from whole blood of 50 SSc patients and in 30 healthy controls.
Nanoscale Adv
December 2024
Department of Chemical Engineering, University of Manchester Manchester M13 9PL UK
Nanocrystals are widely explored for a range of medical, imaging, sensing, and energy conversion applications. CdS nanocrystals have been reported as excellent photocatalysts, with thin film CdS also highly important in photovoltaic devices. To optimise properties of nanocrystals, control over phase, facet, and morphology are vital.
View Article and Find Full Text PDFNanoscale
December 2024
Laboratoire MONARIS, UMR 8233, Sorbonne Université, 4 Place Jussieu, 75005 Paris, France.
Precise tuning of ligands and a comprehensive understanding of their roles and functionalities are crucial for the design of nanoparticles (NPs) with tailored properties. In this study, we present the synthesis of copper NPs with precise control over their shape and crystallinity, relying on the remarkable versatility of oleylamine (OLA) as both a solvent and a ligand. By adjusting the temperature, OLA enables the formation of cubic NPs under rapid heating, reflecting kinetic control, and octahedral NPs with slow heating, indicating thermodynamic control.
View Article and Find Full Text PDFPhysiol Mol Biol Plants
November 2024
Department of Botany, University of Poonch Rawalakot, Rawalakot, 12350 Pakistan.
The current study is the first comprehensive report on the expression of fibrinogen binding protein (FIB) antigen in the genetically engineered switchgrass. Mammary tissue inflammation is one of the major infectious diseases caused by in the dairy animals. The aim of the present study is to develop an efficient and economical bioengineered immunogen for controlling mastitis in developing countries.
View Article and Find Full Text PDFJ Fluoresc
December 2024
Department of Physics, Dibrugarh University, Dibrugarh, 786004, Assam, India.
Sol-gel silica matrices singly doped with Sm and co-doped with ligands phenyl phosphinic acid (PPIA) and trioctylphosphine oxide (TOPO) were fabricated and studied for their structural and spectroscopic behaviour. Structural studies were done by x-ray diffraction (XRD) and Fourier transform infra-red (FTIR) absorption analysis whereas spectroscopic behaviour was studied by ultraviolet - visible (UV-Vis) absorption, photoluminescence (PL) excitation, emission and time-correlated decay analyses. XRD studies exhibit the amorphous nature of the samples and FTIR studies corroborate the presence of the ligands in the silica matrix.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!