A salen-manganese catalytic free radical scavenger inhibits type 1 diabetes and islet allograft rejection.

Diabetes

Department of Molecular and Medical Pharmacology, UCLA School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095-1735, USA.

Published: October 2004

Reactive oxygen species, such as superoxide, and nitrogen oxides, such as peroxynitrite, are thought to contribute to beta-cell destruction during the disease process that leads to type 1 diabetes. EUK-8 is a member of a new class of synthetic salen-manganese compounds with low toxicity that possess catalytic superoxide dismutase, peroxidase, and catalase activity that can inactivate superoxide and nitrogen oxides (e.g., peroxynitrite and nitrogen dioxide). We observed that EUK-8 administration inhibited the adoptive transfer of type 1 diabetes to NOD mice. In addition, administration of EUK-8 to NOD mice with established autoimmunity completely prevented the development of type 1 diabetes for up to 1 year in age, even though the treatment was discontinued after 35 weeks of age. EUK-8 treatment also prolonged the survival of islet allografts in newly diabetic NOD mice. Thus, reactive oxygen and nitrogen species contribute to the pathoetiology of both spontaneous type 1 diabetes and allograft rejection. In cultures of NIT-1 cells, EUK-8 inhibited cytotoxicity caused by superoxide as well as nitric oxide. Collectively, our findings implicate a greater role for nitrogen oxides (other than peroxynitrite) in beta-cell damage. Antioxidants designed to prevent the formation of both cytotoxic reactive oxygen and nitrogen species may effectively protect beta-cells from spontaneous autoimmunity and alloresponses.

Download full-text PDF

Source
http://dx.doi.org/10.2337/diabetes.53.10.2574DOI Listing

Publication Analysis

Top Keywords

type diabetes
20
reactive oxygen
12
nitrogen oxides
12
oxides peroxynitrite
12
nod mice
12
allograft rejection
8
superoxide nitrogen
8
oxygen nitrogen
8
nitrogen species
8
nitrogen
6

Similar Publications

Male infertility is a common complication of diabetes. Diabetes leads to the decrease of zinc (Zn) content, which is a necessary trace element to maintain the normal structure and function of reproductive organs and spermatogenesis. The purpose of this study was to investigate the effect of metformin combined with zinc on testis and sperm in diabetic mice.

View Article and Find Full Text PDF

Progress report on multiple endocrine neoplasia type 1.

Fam Cancer

January 2025

Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.

Multiple endocrine neoplasia type 1 (MEN1) syndrome is an autosomal dominant disorder caused by a germline pathogenic variant in the MEN1 tumor suppressor gene. Patients with MEN1 have a high risk for primary hyperparathyroidism (PHPT) with a penetrance of nearly 100%, pituitary adenomas (PitAd) in 40% of patients, and neuroendocrine neoplasms (NEN) of the pancreas (40% of patients), duodenum, lung, and thymus. Increased MEN1-related mortality is mainly related to duodenal-pancreatic and thymic NEN.

View Article and Find Full Text PDF

Introduction: Obesity and its complications are associated with high morbidity/mortality and a significant healthcare cost burden in Spain. It is therefore essential to know the potential clinical and economic benefits of reducing obesity. The objective of this study is to predict the decrease in rates of onset of potential complications associated with obesity and the cost savings after a weight loss of 15% over 10 years in Spain.

View Article and Find Full Text PDF

Purpose Of Review: Addressing diabetes distress (DD), the emotional demands of living with diabetes, is a crucial component of diabetes care. Most individuals with type 2 diabetes and approximately half of adults with type 1 diabetes receive their care in the primary care setting. This review will provide guidance on addressing DD and implementing targeted techniques that can be tailored to primary care patients.

View Article and Find Full Text PDF

Pro-Arg, The Potential Anti-Diabetes Peptide, Screened from Almond by In-Silico Analysis.

Plant Foods Hum Nutr

January 2025

College of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing, 404100, China.

Insulin resistance was considered to be the most important clinical phenotype of type 2 diabetes (T2DM). Almond is a widely-consumed nut and long-term intake was beneficial to alleviating insulin resistance in patients with T2DM. Hence, screening of anti-diabetic peptides from almond proteins was feasible based on the effectiveness of peptides in the treatment of T2DM.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!