A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Hypothalamic ATP-sensitive K + channels play a key role in sensing hypoglycemia and triggering counterregulatory epinephrine and glucagon responses. | LitMetric

It has been postulated that specialized glucose-sensing neurons in the ventromedial hypothalamus (VMH) are able to detect falling blood glucose and trigger the release of counterregulatory hormones during hypoglycemia. The molecular mechanisms used by glucose-sensing neurons are uncertain but may involve cell surface ATP-sensitive K(+) channels (K(ATP) channels) analogous to those of the pancreatic beta-cell. We examined whether the delivery of sulfonylureas directly into the brain to close K(ATP) channels would modulate counterregulatory hormone responses to either brain glucopenia (using intracerebroventricular 5-thioglucose) or systemic hypoglycemia in awake chronically catheterized rats. The closure of brain K(ATP) channels by global intracerebroventricular perfusion of sulfonylurea (120 ng/min glibenclamide or 2.7 microg/min tolbutamide) suppressed counterregulatory (epinephrine and glucagon) responses to brain glucopenia and/or systemic hypoglycemia (2.8 mmol/l glucose clamp). Local VMH microinjection of a small dose of glibenclamide (0.1% of the intracerebroventricular dose) also suppressed hormonal responses to systemic hypoglycemia. We conclude that hypothalamic K(ATP) channel activity plays an important role in modulating the hormonal counterregulatory responses triggered by decreases in blood glucose. Our data suggest that closing of K(ATP) channels in the VMH (much like the beta-cell) impairs defense mechanisms against glucose deprivation and therefore could contribute to defects in glucose counterregulation.

Download full-text PDF

Source
http://dx.doi.org/10.2337/diabetes.53.10.2542DOI Listing

Publication Analysis

Top Keywords

katp channels
16
systemic hypoglycemia
12
atp-sensitive channels
8
counterregulatory epinephrine
8
epinephrine glucagon
8
glucagon responses
8
glucose-sensing neurons
8
blood glucose
8
responses brain
8
brain glucopenia
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!