Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
In this paper, we define a simple criterion of the synchronization threshold in the set of coupled chaotic systems (flows or maps) with diagonal diffusive coupling. The condition of chaotic synchronization is determined only by two "parameters of order," i.e., the largest Lyapunov exponent and the coupling coefficient. Our approach can be applied for both regular chaotic networks and arrays or lattices of chaotic oscillators with irregular, arbitrarily assumed structure of coupling. The main idea of the synchronization stability criterion is based on linear analysis of the ensembles of simplest dynamical systems. Numerical simulations confirm that such a linear approach approximates the synchronization threshold with high precision.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevE.70.026217 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!