We study the rescaled probability distribution of the critical depinning force of an elastic system in a random medium. We put in evidence the underlying connection between the critical properties of the depinning transition and the extreme value statistics of correlated variables. The distribution is Gaussian for all periodic systems, while in the case of random manifolds there exists a family of universal functions ranging from the Gaussian to the Gumbel distribution. Both of these scenarios are a priori experimentally accessible in finite, macroscopic, disordered elastic systems.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.93.125701 | DOI Listing |
Micromachines (Basel)
December 2024
Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan Campus, 170 Kessels Road, Brisbane, QLD 4111, Australia.
The evaporation dynamics of sessile droplets on re-entrant microstructures are critical for applications in microfluidics, thermal management, and self-cleaning surfaces. Re-entrant structures, such as mushroom-like shapes with overhanging features, trap air beneath droplets to enhance non-wettability. The present study examines the evaporation of a water droplet on silicon carbide (SiC) and silicon dioxide (SiO) re-entrant structures, focusing on the effects of material composition and solid area fraction on volume reduction, contact angle, and evaporation modes.
View Article and Find Full Text PDFPhys Rev Lett
November 2024
Computational Physics Laboratory, Tampere University, P.O. Box 600, FI-33014 Tampere, Finland.
The depinning transition critical point is manifested as power-law distributed avalanches exhibited by slowly driven elastic interfaces in quenched random media. Here we show that since avalanches with different starting heights relative to the mean interface height or different initial local interface curvatures experience different excess driving forces due to elasticity, avalanches close to the "global" critical point of non-mean-field systems can be separated into populations of subcritical, critical, and supercritical ones. The asymmetric interface height distribution results in an excess of supercritical avalanches, manifested as a "bump" in the avalanche size distribution cutoff.
View Article and Find Full Text PDFPhys Rev E
September 2024
Institut Jean Le Rond D'Alembert (UMR 7190), Sorbonne Université & CNRS, Paris, France.
The intermittent damage evolution preceding the failure of heterogeneous brittle solids is well described by scaling laws. In deciphering its origins, failure is routinely interpreted as a critical transition. However at odds with expectations of universality, a large scatter in the value of the scaling exponents is reported during acoustic emission experiments.
View Article and Find Full Text PDFLangmuir
September 2024
College of Pipeline and Civil Engineering, China University of Petroleum (East China), Qingdao 266580, China.
With the continuous exploitation of petroleum resources, the distribution and displacement of residual oils have become key issues in enhancing oil recovery. In a reservoir, there are various forms of residual oils caused by the capillary force, viscous force, and some other hydrodynamic effects, which lead to the Jamin effect, and they restrict the oil displacement process. In this study, the morphologies of oil droplets in a capillary tube laden with water and sodium dodecyl sulfate (SDS) solutions are experimentally investigated.
View Article and Find Full Text PDFPhys Rev E
May 2024
Theoretical Division and Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA.
We examine the ordering, pinning, and dynamics of two-dimensional pattern-forming systems interacting with a periodic one-dimensional substrate. In the absence of the substrate, particles with competing long-range repulsion and short-range attraction form anisotropic crystal, stripe, and bubble states. When the system is tuned across the stripe transition in the presence of a substrate, we find that there is a peak effect in the critical depinning force when the stripes align and become commensurate with the substrate.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!