Using a differential magneto-optical technique to visualize the flow of transport currents, we reveal a new delocalization line within the reversible vortex liquid region in the presence of a low density of columnar defects. This line separates a homogeneous vortex liquid, in which all the vortices are delocalized, from a heterogeneous "nanoliquid" phase, in which interconnected nanodroplets of vortex liquid are caged in the pores of a solid skeleton formed by vortices pinned on columnar defects. The nanoliquid phase displays high correlation along the columnar defects but no transverse critical current.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.93.097002 | DOI Listing |
Langmuir
January 2025
Department of Chemical Engineering, Indian Institute of Technology, Guwahati 781039, Assam, India.
Self-organized contact line instabilities (CLI) of a macroscopic liquid crystal (LC) droplet can be an ingenious pathway to generate a large collection of miniaturized LC drops. For example, when a larger drop of volatile solvent (e.g.
View Article and Find Full Text PDFChemSusChem
January 2025
Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, QLD, 4111, Australia.
Carbon dots (CDs) as a new class of photoluminescent zero-dimension carbon nanoparticles have attracted significant research interests owing to their extraordinary opto-electro-properties and biocompatibility. So far, almost all syntheses of CDs require either heat treatment or exertion of high energy fields. Herein, a scalable room-temperature vortex fluidic method is introduced to the CDs synthesis using the angled vortex fluidic device (VFD).
View Article and Find Full Text PDFAnal Methods
January 2025
Department of Chemistry, Universidade Federal de Santa Catarina, Florianópolis, SC, 88035-972, Brazil.
A new analytical method was developed for the determination of 14 multiclass emerging organic contaminants in surface waters using LC-MS, and Dispersive Liquid-Liquid Microextraction (DLLME) for extraction. Different Natural Deep Eutectic Solvents (NADESs) composed of terpenes and organic acids were tested as extraction solvents and characterized by Fourier Transform Infrared Spectroscopy (FTIR), Hydrogen Nuclear Magnetic Resonance Spectroscopy (H-NMR), Differential Scanning Calorimetry (DSC), Thermogravimetric Analysis (TGA), density, and viscosity, eliminating the need to use traditional chlorinated solvents. NADES produced with butyric acid and thymol showed the best results and was selected for application for the first time in the extraction of emerging organic contaminants of different classes in water samples.
View Article and Find Full Text PDFInt J Heat Mass Transf
March 2024
Department of Mechanical and Aerospace Engineering, University of California, Los Angeles, CA 90095, United States of America.
In classical theory, heat conduction in solids is regarded as a diffusion process driven by a temperature gradient, whereas fluid transport is understood as convection process involving the bulk motion of the liquid or gas. In the framework of theory, which is directly built upon quantum mechanics without relying on measured parameters or phenomenological models, we observed and investigated the fluid-like convective transport of energy carriers in solid heat conduction. Thermal transport, carried by phonons, is simulated in graphite by solving the Boltzmann transport equation using a Monte Carlo algorithm.
View Article and Find Full Text PDFSe Pu
January 2025
Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan 523808, China.
Halogenated organic pollutants (HOPs) have attracted considerable attention owing to their persistence, bioaccumulation, and toxicity. The development of methods to detect HOPs in fish is challenging owing to the compositional complexity of fish matrices, which contain high levels of lipids and relatively low concentrations of HOPs. In addition, the lipophilicity of most HOPs renders their extraction difficult.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!