Weakly bound dimers of fermionic atoms.

Phys Rev Lett

FOM Institute for Atomic and Molecular Physics, Kruislaan 407, 1098 SJ Amsterdam, The Netherlands.

Published: August 2004

We discuss the behavior of weakly bound bosonic dimers formed in a two-component cold Fermi gas at a large positive scattering length a for the interspecies interaction. We find the exact solution for the dimer-dimer elastic scattering and obtain a strong decrease of their collisional relaxation and decay with increasing a. The large ratio of the elastic to inelastic rate is promising for achieving Bose-Einstein condensation of the dimers and cooling the condensed gas to very low temperatures.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.93.090404DOI Listing

Publication Analysis

Top Keywords

weakly bound
8
bound dimers
4
dimers fermionic
4
fermionic atoms
4
atoms discuss
4
discuss behavior
4
behavior weakly
4
bound bosonic
4
bosonic dimers
4
dimers formed
4

Similar Publications

New approaches to achieve facile and reversible dihydrogen activation are of importance for synthesis, catalysis, and hydrogen storage. Here we show that low-coordinate magnesium oxide complexes [{(nacnac)Mg}(μ-O)] , with nacnac = HC(RCNDip), Dip = 2,6-PrCH, R = Me (), Et (), Pr (), readily react with dihydrogen under mild conditions to afford mixed hydride-hydroxide complexes [{(nacnac)Mg}(μ-H)(μ-OH)] . Dehydrogenation of complexes is strongly dependent on remote ligand substitution and can be achieved by simple vacuum-degassing of (R = Pr) to regain .

View Article and Find Full Text PDF

The folded auto-inhibited state of kinesin-1 is stabilized by multiple weak interactions and binds weakly to microtubules. Here we investigate the extent to which homodimeric kinesin-1 lacking light chains is activated by the dynein activating adaptor BicD. We show that one or two kinesins can bind to the central region of BicD (CC2), a region distinct from that which binds dynein-dynactin (CC1) and cargo-adaptor proteins (CC3).

View Article and Find Full Text PDF

Palladium (Pd) catalysts are promising for electrochemical reduction of CO to CO but often can be deactivated by poisoning owing to the strong affinity of *CO on Pd sites. Theoretical investigations reveal that different configurations of *CO endow specific adsorption energies, thereby dictating the final performances. Here, a regulatory strategy toward *CO absorption configurations is proposed to alleviate CO poisoning by simultaneously incorporating Cu and Zn atoms into ultrathin Pd nanosheets (NSs).

View Article and Find Full Text PDF

Deep neural networks (DNNs) have demonstrated exceptional performance across various image segmentation tasks. However, the process of preparing datasets for training segmentation DNNs is both labor-intensive and costly, as it typically requires pixel-level annotations for each object of interest. To mitigate this challenge, alternative approaches such as using weak labels (e.

View Article and Find Full Text PDF

The complexity of allosteric enzymatic regulation continues to inspire synthetic chemists seeking to emulate interconnected biological systems. In this work, a Pt2L4 cage capable of catalyzing the cyclization reaction of an alkynoic tosyl amide is orthogonally coupled to a diacid-catalyzed carbodiimide-hydration cycle. This new Pt-catalyzed cyclization reaction is demonstrated to exhibit electronic regulation by inclusion of different guest effectors.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!