Specific external control of chemical reaction systems and both dynamic control and signal processing as central functions in biochemical reaction systems are important issues of modern nonlinear science. For example nonlinear input-output behavior and its regulation are crucial for the maintainance of the life process that requires extensive communication between cells and their environment. An important question is how the dynamical behavior of biochemical systems is controlled and how they process information transmitted by incoming signals. But also from a general point of view external forcing of complex chemical reaction processes is important in many application areas ranging from chemical engineering to biomedicine. In order to study such control issues numerically, here, we choose a well characterized chemical system, the CO oxidation on Pt(110), which is interesting per se as an externally forced chemical oscillator model. We show numerically that tuning of temporal self-organization by input signals in this simple nonlinear chemical reaction exhibiting oscillatory behavior can in principle be exploited for both specific external control of dynamical system behavior and processing of complex information.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/1.1776431 | DOI Listing |
Chemistry
January 2025
Shihezi University, School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, North 4th Road, 832003, Shihezi, CHINA.
An N,N,N-type Cu(Ⅱ) complex-catalyzed desaturation method for converting alcohols, ketones, lactones, and lactams to their α,β-unsaturated carbonyl compounds is reported. The dehydrogenation reaction can be conducted with a green terminal oxidant O2 without requiring strong acid/base or stoichiometric oxidants. The Cu(Ⅱ) complex/TEMPO/O2 system uses a non-noble catalyst, and a green terminal oxidant as well as demonstrates high activity and functional group tolerance.
View Article and Find Full Text PDFNature
January 2025
School of Environment and Energy, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, South China University of Technology, Guangzhou, China.
Lithium (Li) metal batteries (LMBs) are promising for high-energy-density rechargeable batteries. However, Li dendrites formed by the reaction between highly active Li and non-aqueous electrolytes lead to safety concerns and rapid capacity decay. Developing a reliable solid-electrolyte interphase is critical for realizing high-rate and long-life LMBs, but remains technically challenging.
View Article and Find Full Text PDFNature
January 2025
Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, USA.
High-throughput experimentation (HTE) has accelerated academic and industrial chemical research in reaction development and drug discovery and has been broadly applied in many domains of organic chemistry. However, application of HTE in electrosynthesis-an enabling tool for chemical synthesis-has been limited by a dearth of suitable standardized reactors. Here we report the development of microelectronic devices, which are produced using standard nanofabrication techniques, to enable wireless electrosynthesis on the microlitre scale.
View Article and Find Full Text PDFNat Chem Biol
January 2025
State Key Laboratory of Chemo/Biosensing and Chemometrics and School of Chemistry and Chemical Engineering, Hunan University, Changsha, China.
Artificial metalloenzymes (ArMs) integrated within whole cells have emerged as promising catalysts; however, their sensitivity to metal centers remains a systematic challenge, resulting in diminished activity and turnover. Here we address this issue by inducing in cellulo liquid-liquid phase separation through a self-labeling fusion protein, HaloTag-SNAPTag. This strategy creates membraneless, isolated liquid condensates within Escherichia coli as protective compartments for the assembly of ArMs using the same fusion protein.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Pharmacology, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand.
Sutures from natural and synthetic materials are utilized to close wounds, stop bleeding, reduce pain and infection, repair cutaneous wounds, minimize scarring, and promote optimal wound healing. We used mechanical and chemical methods to extract cellulose fibers from cylindrical snake grass (Dracaena angolensis) (Welw. ex Carrière) Byng & Christenh.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!