A series of 3,3'-polymethylene-bridged bi[1,8]naphthyridine (binap) ligands, 3a-c, are complexed with Ru(II) to afford [Ru(tpy)(3a-c)(H(2)O)](2+) where an uncomplexed nitrogen on 3a-c is situated so it can form a H-bond with the coordinated water. An additional complex involving [Ru(4'-NMe(2)tpy)(3b)(H(2)O)](2+) is also prepared. X-ray analyses of the [Ru(tpy)(3a,c)(H(2)O)](2+) complexes indicate well-organized H-bonds even when the binap is nonplanar. In an attempt to realize photooxidation, the effects of light, varying potential, and pH were examined. A Pourbaix diagram indicated that the oxidation potential decreased by approximately 0.5 V in the pH range of 1.9-11.6. The lowest-energy electronic absorption for the binap complexes involves the metal-to-ligand charge transfer to the binap ligand and is sensitive to ligand planarity. The absorbance shifted to a lower energy as the auxiliary ligand became a better donor (4'-NMe(2)tpy) or as the water was deprotonated. Acetonitrile was found to displace water most easily for the complex of 3c, where the ligand is the least planar. Despite promising features, photooxidation of the bound water was not observed.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ic040051nDOI Listing

Publication Analysis

Top Keywords

design study
4
study bi[18]naphthyridine
4
bi[18]naphthyridine ligands
4
ligands potential
4
potential photooxidation
4
photooxidation mediators
4
mediators ruii
4
ruii polypyridyl
4
polypyridyl aquo
4
aquo complexes
4

Similar Publications

Background: X-ray grating-based dark-field imaging can sense the small angle scattering caused by object's micro-structures. This technique is sensitive to the porous microstructure of lung alveoli and has the potential to detect lung diseases at an early stage. Up to now, a human-scale dark-field CT (DF-CT) prototype has been built for lung imaging.

View Article and Find Full Text PDF

Pharmaceuticals removal from aqueous solution by water hyacinth (Eichhornia crassipes): a comprehensive investigation of kinetics, equilibrium, and thermodynamics.

Environ Sci Pollut Res Int

January 2025

Grupo de Investigación Materiales Con Impacto (Mat&Mpac), Facultad de Ciencias Básicas, Universidad de Medellín, Carrera 87 No. 30-65, 050026, Medellín, Colombia.

This study shows the efficiency of WH-C450, an adsorbent obtained from water hyacinth (WH) biomass, in the removal of sulfamethoxazole (SMX) from aqueous solutions. The process involves calcination of WH at 450 °C to produce an optimal adsorbent material capable of removing up to 73% of SMX and maximum SMX adsorption capacity of 132.23 mg/g.

View Article and Find Full Text PDF

Background And Objective: Limited information is available on the pharmacokinetics of rifampicin (RIF) along with that of its active metabolite, 25-deacetylrifampicin (25-dRIF). This study aimed to analyse the pharmacokinetic data of RIF and 25-dRIF collected in adult patients treated for tuberculosis.

Methods: In adult patients receiving 10 mg/kg of RIF as part of a standard regimen for drug-susceptible pulmonary tuberculosis enrolled in the Opti-4TB study, plasma RIF and 25-dRIF concentrations were measured at various occasions.

View Article and Find Full Text PDF

Purpose: Atrial fibrillation (AF) is the most common chronic cardiac arrhythmia that increases the risk of stroke, primarily due to thrombus formation in the left atrial appendage (LAA). Left atrial appendage occlusion (LAAO) devices offer an alternative to oral anticoagulation for stroke prevention. However, the complex and variable anatomy of the LAA presents significant challenges to device design and deployment.

View Article and Find Full Text PDF

Putranjiva roxburghii is an important medicinal plant utilized for remedy of female reproductive ailments. Its seed extract is being used as a uterine health booster due to the presence of several pharmaceutically important phytochemicals. However, the presence of phytochemicals in its leaf is still unexplored.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!