A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Evaluation of mutual information and genetic programming for feature selection in QSAR. | LitMetric

Evaluation of mutual information and genetic programming for feature selection in QSAR.

J Chem Inf Comput Sci

School of Biological Sciences, University of Exeter, Exeter EX4 4QF, Great Britain.

Published: November 2005

Feature selection is a key step in Quantitative Structure Activity Relationship (QSAR) analysis. Chance correlations and multicollinearity are two major problems often encountered when attempting to find generalized QSAR models for use in drug design. Optimal QSAR models require an objective variable relevance analysis step for producing robust classifiers with low complexity and good predictive accuracy. Genetic algorithms coupled with information theoretic approaches such as mutual information have been used to find near-optimal solutions to such multicriteria optimization problems. In this paper, we describe a novel approach for analyzing QSAR data based on these methods. Our experiments with the Thrombin dataset, previously studied as part of the KDD (Knowledge Discovery and Data Mining) Cup 2001 demonstrate the feasibility of this approach. It has been found that it is important to take into account the data distribution, the rule "interestingness", and the need to look at more invariant and monotonic measures of feature selection.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ci049933vDOI Listing

Publication Analysis

Top Keywords

feature selection
12
qsar models
8
qsar
5
evaluation mutual
4
mutual genetic
4
genetic programming
4
programming feature
4
selection qsar
4
qsar feature
4
selection key
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!