Calorimetry has been recommended and performed in proton beams for some time, but never has graphite calorimetry been used as a reference dosimeter in clinical proton beams. Furthermore, only a few calorimetry measurements have been reported in ocular proton beams. In this paper we describe the construction and performance of a small-body portable graphite calorimeter for clinical low-energy proton beams. Perturbation correction factors for the gap effect, volume averaging effect, heat transfer phenomena and impurity effect are calculated and applied in a comparison with ionization chamber dosimetry following IAEA TRS-398. The ratio of absorbed dose to water obtained from the calorimeter measurements and from the ionization measurements varied between 0.983 and 1.019, depending on the beam type and the ionization chamber calibration modality. Standard uncertainties on these values varied between 1.9% and 2.5% including a substantial contribution from the kQ values in IAEA TRS-398. The (Wair/e)p values inferred from these measurements varied between 33.6 J C(-1) and 34.9 J C(-1) with similar standard uncertainties. A number of improvements for the small-body portable graphite calorimeter and the experimental set-up are suggested for potential reduction of the uncertainties.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/0031-9155/49/16/019 | DOI Listing |
Phys Med Biol
January 2025
The Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, Wuhan, Hubei, 430074, CHINA.
Objective: In-beam positron emission tomography (PET) has important development prospects in real-time monitoring of proton therapy. However, in the beam-on operation, the high bursts of radiation events pose challenges to the performance of the PET system.
Approach: In this study, we developed a dual-head in-beam PET system for proton therapy monitoring and evaluated its performance.
Phys Med
January 2025
Department of Medical Physics, Apollo Proton Cancer Centre, 100 Feet Road Taramani, Chennai, Tamil Nadu, India. Electronic address:
Objectives: The purpose of this study was to investigate the fundamental properties of spot-scanning proton beams and compare them to Monte Carlo (MC) simulations, both with and without CT calibration, using spatially diverse combinations of materials.
Methods: A heterogeneous phantom was created by spatially distributing titanium, wax, and thermocol to generate six scenarios of heterogeneous combinations. Proton pencil beams ranging in energy from 100 to 226.
Nat Commun
January 2025
State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian, China.
Regulating the spintronic structure of electrocatalysts can improve the oxygen evolution reaction performance efficiently. Nonetheless, the effects of tuning the spintronic structure for the oxygen evolution reaction mechanisms have rarely been discussed. Here, we show a ruthenium-cobalt-tin oxide with optimized spintronic structure due to the quantum spin interaction of Ru and Co.
View Article and Find Full Text PDFMol Cancer Ther
December 2024
National Center for Tumor Diseases, Heidelberg, Germany.
Ultra-high dose rate radiotherapy with electrons and protons has shown potential for cancer treatment by effectively targeting tumors while sparing healthy tissues (FLASH effect). This study aimed to investigate the potential FLASH sparing effect of ultra-high-dose rate helium ion irradiation, focusing on acute brain injury and subcutaneous tumor response in a preclinical in vivo setting. Raster-scanned helium ion beams were used to compare the effects of standard dose rate (SDR at 0.
View Article and Find Full Text PDFJ Appl Clin Med Phys
December 2024
Department of Radiation Oncology, Lynn Cancer Institute, Boca Raton Regional Hospital, Baptist Health South Florida, Boca Raton, Florida, USA.
Purpose: A novel proton beam delivery method known as DynamicARC spot scanning has been introduced. The current study aims to determine whether the partial proton arc technique, in conjunction with DynamicARC pencil beam scanning (PBS), can meet clinical acceptance criteria for bilateral head and neck cancer (HNC) and provide an alternative to full proton arc and traditional intensity-modulated proton therapy (IMPT).
Method: The study retrospectively included anonymized CT datasets from ten patients with bilateral HNC, all of whom had previously received photon treatment.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!