Glycosaminoglycans and the regulation of allergic inflammation.

Curr Drug Targets Inflamm Allergy

Sackler Institute of Pulmonary Pharmacology, GKT School of Biomedical Sciences, Guy's Campus, London, UK.

Published: September 2004

Glycosaminoglycans (GAGs) are large, polyanionic molecules expressed throughout the body. The GAG heparin, co-released with histamine, is synthesised by and stored exclusively in mast cells, whereas the closely related molecule heparan sulphate is expressed, as part of a proteoglycan, on cell surfaces and throughout tissue matrices. These molecules are increasingly thought to play a role in regulation of the inflammatory response and heparin like molecules are now being seriously considered to hold potential in the treatment of inflammatory diseases such as asthma. Heparin and related molecules have been found to exert anti-inflammatory effects in a wide range of in vitro assays, animal models and in human disease. The anti-inflammatory activities of heparin are independent of the well-established anticoagulant activity of heparin, suggesting that the separation of these properties could yield novel anti-inflammatory drugs, which may be useful in the future treatment of inflammatory diseases.

Download full-text PDF

Source
http://dx.doi.org/10.2174/1568010043343589DOI Listing

Publication Analysis

Top Keywords

heparin molecules
8
treatment inflammatory
8
inflammatory diseases
8
heparin
5
glycosaminoglycans regulation
4
regulation allergic
4
allergic inflammation
4
inflammation glycosaminoglycans
4
glycosaminoglycans gags
4
gags large
4

Similar Publications

Small interfering RNA (siRNA) therapy in acute myeloid leukemia (AML) is a promising strategy as the siRNA molecule can specifically target proteins involved in abnormal cell proliferation. The development of a clinically applicable method for delivering siRNA molecules is imperative due to the challenges involved in effectively delivering the siRNA into cells. We investigated the delivery of siRNA to AML MOLM-13 cells with the use of two lipid-substituted polyethyleneimines (PEIs), a commercially available reagent (Prime-Fect) and a recently reported reagent with improved lipid substitution (PEI1.

View Article and Find Full Text PDF

Introduction: The choroid plexus is located in the cerebral ventricles. It consists of a stromal core and a single layer of cuboidal epithelial cells that forms the blood-cerebrospinal barrier. The main function of the choroid plexus is to produce cerebrospinal fluid.

View Article and Find Full Text PDF

Proteomic Identification and Functional Analysis of Reveals Heparin-Binding Proteins.

J Trop Med

January 2025

National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), Laboratory of Parasite and Vector Biology, Ministry of Public Health, WHO Collaborating Centre for Tropical Diseases, National Center for International Research on Tropical Diseases, Ministry of Science and Technology, Shanghai 200025, China.

Glycosaminoglycan (GAG) molecules on the surface of red blood cells play an important regulatory role in the invasion of merozoites of apicomplexan protozoa. Heparan sulfate, a type of GAG molecule, has been identified as an important receptor facilitating the invasion of red blood cells by these parasites. Proteins in the parasite that exhibit strong affinity for heparin may play a pivotal role in this invasion process.

View Article and Find Full Text PDF

Background And Objective: Previously, the novel small molecule ISFP10 has been shown to inhibit fungal phosphoglucomutase (PGM) activity in and spp. With 50-fold selectivity over the human PGM molecule due to the presence of a unique yet conserved cysteine residue present in a number pathogenic fungal PGMs, use of this compound may provide a novel broad-spectrum approach to treating fungal infections. Accordingly, we sought to determine the tolerability in test animals receiving this compound, as well as the potential antifungal activity of ISFP10 on cultures of the common fungal pathogens and .

View Article and Find Full Text PDF

Adeno-associated virus (AAV)-based vectors have emerged as an effective and widely used technology for somatic gene therapy approaches, including those targeting the retina. A major advantage of the AAV technology is the availability of a large number of serotypes that have either been isolated from nature or produced in the laboratory. These serotypes have different properties in terms of sensitivity to neutralizing antibodies, cellular transduction profile and efficiency.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!