Recent work has suggested that the thrombin-bound conformation of fibrinopeptide A exhibits a strand-turn-strand motif, with a beta-turn centered at residues Glu-11 and Gly-12. Our molecular modeling analysis indicates that the published fibrinopeptide conformation cannot bind reasonably to thrombin but that reorientation of two residues by alignment with bovine pancreatic trypsin inhibitor provides a good fit within the deep thrombin cleft and satisfies all of the experimental nuclear Overhauser effect data. Based on this analysis, we have successfully designed and synthesized hybrid peptide mimetic substrates and inhibitors that mimic the proposed beta-turn structure. The results indicate that the turn conformation is an important aspect of thrombin specificity and that our turn mimetic design successfully mimics the thrombin-bound conformation of fibrinopeptide.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC48521 | PMC |
http://dx.doi.org/10.1073/pnas.89.5.1705 | DOI Listing |
Fertil Steril
January 2025
Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO 63104 USA. Electronic address:
Background: Thrombin prefers substrates carrying Arg at the site of cleavage (P1) because of the presence of D189 in the primary specificity (S1) pocket but can also cleave substrates carrying Phe at P1. The structural basis of this property is unknown.
Objective: Solve the X-ray structure of thrombin bound to a ligand carrying Phe at P1 and investigate the effects of replacing D189.
J Thromb Haemost
January 2025
Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO 63104, USA. Electronic address:
Background: Thrombin prefers substrates carrying Arg at the site of cleavage (P1) because of the presence of D189 in the primary specificity (S1) pocket but can also cleave substrates carrying Phe at P1. The structural basis of this property is unknown.
Objectives: Solve the X-ray structure of thrombin bound to a ligand carrying Phe at P1 and investigate the effects of replacing D189.
Molecules
August 2019
Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive West, Lethbridge, AL T1K 3M4, Canada.
Aptamers are functional nucleic acids that bind to a range of targets (small molecules, proteins or cells) with a high affinity and specificity. Chemically-modified aptamers are of interest because the incorporation of novel nucleobase components can enhance aptamer binding to target proteins, while fluorescent base analogues permit the design of functional aptasensors that signal target binding. However, since optimally modified nucleoside designs have yet to be identified, information about how to fine tune aptamer stability and target binding affinity is required.
View Article and Find Full Text PDFActa Crystallogr Sect F Struct Biol Cryst Commun
April 2012
IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, 4150-180 Porto, Portugal.
Boophilin is a tight-binding thrombin inhibitor composed of two canonical Kunitz-type domains in a tandem arrangement. Thrombin-bound boophilin can inhibit a second trypsin-like serine proteinase, most likely through the reactive loop of its N-terminal Kunitz domain. Here, the crystallization and preliminary crystallographic analysis of the isolated N-terminal domain of boophilin is reported.
View Article and Find Full Text PDFBlood
June 2011
Institute for Biomedical Research, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain.
Thrombin-catalyzed activation of coagulation factor V (FV) is an essential positive feedback reaction within the blood clotting system. Efficient processing at the N- (Arg(709)-Ser(710)) and C-terminal activation cleavage sites (Arg(1545)-Ser(1546)) requires initial substrate interactions with 2 clusters of positively charged residues on the proteinase surface, exosites I and II. We addressed the mechanism of activation of human factor V (FV) using peptides that cover the entire acidic regions preceding these cleavage sites, FV (657-709)/ (FVa2) and FV(1481-1545)/(FVa3).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!