Download full-text PDF

Source

Publication Analysis

Top Keywords

inherited cortical
4
cortical cerebellar
4
cerebellar atrophy
4
atrophy corriedale
4
corriedale lambs
4
lambs canada
4
canada identical
4
identical "daft
4
"daft lamb"
4
lamb" disease
4

Similar Publications

Melatonin is a pineal hormone synthesized exclusively at night, in several organisms. Its action on sperm is of particular interest, since they transfer genetic and epigenetic information to the offspring, including microRNAs, configuring a mechanism of paternal epigenetic inheritance. MicroRNAs are known to participate in a wide variety of mechanisms in basically all cells and tissues, including the brain and the sperm cells, which are known, respectively, to present 70% of all identified microRNAs and to transfer these molecules to the embryo.

View Article and Find Full Text PDF

The effects of chronically stressing male mice can be transmitted across generations by stress-specific changes in their sperm miRNA content, which induce stress-specific phenotypes in their offspring. However, how each stress paradigm alters the levels of distinct sets of sperm miRNAs is not known. We showed previously that exposure of male mice to chronic social instability (CSI) stress results in elevated anxiety and reduced sociability specifically in their female offspring across multiple generations because it reduces miR-34c levels in sperm of stressed males and their unstressed male offspring.

View Article and Find Full Text PDF

Objectives: To explore the mechanism of Granules (QDG) for alleviating brain damage in spontaneously hypertensive rats (SHRs).

Methods: Twelve 5-week-old SHRs were randomized into SHR control group and SHR+QDG group treated with QDG by gavage at the daily dose of 0.9 g/kg for 12 weeks.

View Article and Find Full Text PDF

Polygenic risk for depression and resting-state functional connectivity of subgenual anterior cingulate cortex in young adults.

J Psychiatry Neurosci

January 2025

From the Department of Psychiatry, Yale University School of Medicine, New Haven, Conn., USA (Chen, Luo, Ide, C.-S. Li); Yale University, New Haven, Conn., USA (H.-T. Li); the Department of Biomedical Engineering, College of Chemistry and Life Science, Beijing University of Technology, Beijing, China (G. Li); the Beijing International Science and Technology Cooperation Base for Intelligent Physiological Measurement and Clinical Transformation, Beijing, China (G. Li); the Department of Neuroscience, Yale University School of Medicine, New Haven, Conn., USA (C.-S Li); the Interdepartment Neuroscience Program, Yale University, New Haven, Conn., USA (C.-S. Li); the Wu Tsai Institute, Yale University, New Haven, Conn., USA (C.-S. Li).

Background: Genetic variants may confer risk for depression by modulating brain structure and function; evidence has underscored the key role of the subgenual anterior cingulate cortex (sgACC) in depression. We sought to examine how the resting-state functional connectivity (rsFC) of the sgACC was associated with polygenic risk for depression in a subclinical population.

Methods: Following published protocols, we computed seed-based whole-brain sgACC rsFC and calculated polygenic risk scores (PRS) using data from healthy young adults from the Human Connectome Project.

View Article and Find Full Text PDF

A new hereditary PROS1 gene mutation caused isolated cortical venous thrombosis.

Thromb Res

February 2025

Department of Neurology, Fujian Institute of Geriatrics, Fujian Medical University Union Hospital, Fuzhou, Fujian, China. Electronic address:

Background: Protein S deficiency is a rare inherited disease. We report the case of a young man who unexpectedly developed isolated cortical vein thrombosis (ICoVT) associated with a novel PROS1 mutation.

Methods: Clinical symptoms were recorded, and physical examinations conducted.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!