Models for recall and recognition.

Annu Rev Psychol

TNO Institute for Perception, Soesterberg, The Netherlands.

Published: April 1992

Download full-text PDF

Source
http://dx.doi.org/10.1146/annurev.ps.43.020192.001225DOI Listing

Publication Analysis

Top Keywords

models recall
4
recall recognition
4
models
1
recognition
1

Similar Publications

Background: Fertility preferences refer to the number of children an individual would like to have, regardless of any obstacles that may stand in the way of fulfilling their aspirations. Despite the creation and application of numerous interventions, the overall fertility rate in West African nations, particularly Nigeria, is still high at 5.3% according to 2018 Nigeria Demographic and Health Survey data.

View Article and Find Full Text PDF

Background: This study employs a LSTM-FC neural networks to address the critical public health issue of child undernutrition in Ethiopia. By employing this method, the study aims classify children's nutritional status and predict transitions between different undernutrition states over time. This analysis is based on longitudinal data extracted from the Young Lives cohort study, which tracked 1,997 Ethiopian children across five survey rounds conducted from 2002 to 2016.

View Article and Find Full Text PDF

Background: Intrahepatic cholestasis of pregnancy (ICP) is a liver disorder that occurs in the second and third trimesters of pregnancy and is associated with a significant risk of fetal complications, including premature birth and fetal death. In clinical practice, the diagnosis of ICP is predominantly based on the presence of pruritus in pregnant women and elevated serum total bile acid. However, this approach may result in missed or delayed diagnoses.

View Article and Find Full Text PDF

Learning an association does not always succeed on the first attempt. Previous studies associated increased error signals in posterior medial frontal cortex with improved memory formation. However, the neurophysiological mechanisms that facilitate post-error learning remain poorly understood.

View Article and Find Full Text PDF

Optimized convolutional neural network using African vulture optimization algorithm for the detection of exons.

Sci Rep

January 2025

Department of Communication Engineering, School of Electronics Engineering, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India.

The detection of exons is an important area of research in genomic sequence analysis. Many signal-processing methods have been established successfully for detecting the exons based on their periodicity property. However, some improvement is still required to increase the identification accuracy of exons.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!