Experimental structural data on the state of substrates bound to class 3 Aldehyde Dehydrogenases (ALDH3A1) is currently unknown. We have utilized molecular mechanics (MM) simulations, in conjunction with new force field parameters for aldehydes, to study the atomic details of benzaldehyde binding to ALDH3A1. Our results indicate that while the nucleophilic Cys243 must be in the neutral state to form what are commonly called near-attack conformers (NACs), these structures do not correlate with increased complexation energy calculated with the MM-Generalized Born Molecular Volume (GBMV) method. The negatively charged Cys243 (thiolate form) of ALDH3A1 also binds benzaldehyde in a stable conformation but in this complex the sulfur of Cys243 is oriented away from benzaldehyde yet yields the most favorable MM-GBMV complexation energy. The identity of the general base, Glu209 or Glu333, in ALDHs remains uncertain. The MM simulations reveal structural and possible functional roles for both Glu209 and Glu333. Structures from the MM simulations that would support either glutamate residue as the general base were further examined with Hybrid Quantum Mechanical (QM)/MM simulations. These simulations show that, with the PM3/OPLS potential, Glu209 must go through a step-wise mechanism to activate Cys243 through an intervening water molecule while Glu333 can go through a more favorable concerted mechanism for the same activation process.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/prot.20256 | DOI Listing |
Proc Natl Acad Sci U S A
January 2025
State Key Laboratory of Protein and Plant Genetic Engineering, School of Life Science, Peking University, Beijing 100871, People's Republic of China.
Phycobilisomes (PBS) are the major photosynthetic light-harvesting complexes in cyanobacteria and red algae. While the structures of PBS have been determined in atomic resolutions, how PBS are attached to the reaction centers of photosystems remains less clear. Here, we report that a linker protein (LcpA) is required for the attachment of PBS to photosystem II (PSII) in the cyanobacterium sp.
View Article and Find Full Text PDFMinerva Dent Oral Sci
January 2025
Department of Biomedical Sciences, Dentistry and Morphological and Functional Imaging, University of Messina, Messina, Italy.
Background: Cadaverine and hydrocinnamic acid are frequent metabolites in inflamed periodontal areas. Their role as a metabolite for plant growth inhibition has been established, but their relevance in humans has yet to be determined. Moreover, Vascular endothelial growth factor (VGEF) is a consistent growth factor in neo-angiogenesis in periodontal regeneration.
View Article and Find Full Text PDFReproduction
January 2025
Y Yu, Reproductive medical center, Peking University Third Hospital, Beijing, China.
In recent decades, it has become increasingly clear that mammalian gametes and early embryos are highly sensitive to metabolic substrates. With advances in single-cell sequencing, metabolomics, and bioinformatics, we now recognize that metabolic pathways not only meet cellular energy demands but also play a critical role in cell proliferation, differentiation, and fate determination. Investigating metabolic processes during oocyte maturation and early embryonic development is thus essential to advancing reproductive medicine and embryology.
View Article and Find Full Text PDFAppl Environ Microbiol
January 2025
Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA.
Lignin contains a variety of interunit linkages, leading to a range of potential decomposition products that can be used as carbon and energy sources by microbes. β-O-4 linkages are the most common in native lignin, and associated catabolic pathways have been well characterized. However, the fate of the mono-aromatic intermediates that result from β-O-4 dimer cleavage has not been fully elucidated.
View Article and Find Full Text PDFChemSusChem
January 2025
Southeast University, School of Chemistry and Chemical Engineering, Dong nan da xue Road No.2, Jiangning District, Nanjing, China., 211189, Nanjing, CHINA.
Concentrated solar-driven CO2 reduction is a breakthrough approach to combat climate crisis. Harnessing the in-situ coupling of high photon flux density and high thermal energy flow initiates multiple energy conversion pathways, such as photothermal, photoelectric, and thermoelectric processes, thereby enhancing the efficient activation of CO2. This review systematically presents the fundamental principles of concentrated solar systems, the design and classification of solar-concentrating devices, and industrial application case studies.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!