Vascular inflammation, secondary to ischemia-reperfusion injury, may play an essential role in vaso-occlusion in sickle cell disease (SCD). To investigate this hypothesis, dorsal skin fold chambers (DSFCs) were implanted on normal and transgenic sickle mice expressing human alpha and beta(s)/beta(s-Antilles) globin chains. Microvessels in the DSFC were visualized by intravital microscopy at baseline in ambient air and after exposure to hypoxia-reoxygenation. The mean venule diameter decreased 9% (P < 0.01) in sickle mice after hypoxia-reoxygenation but remained constant in normal mice. The mean RBC velocity and wall shear rate decreased 55% (P < 0.001) in sickle but not normal mice after hypoxia-reoxygenation. None of the venules in normal mice became static at any time during hypoxia-reoxygenation; however, after 1 hr of hypoxia and 1 hr of reoxygenation, 11.9% of the venules in sickle mice became static (P < 0.001). After 1 hr of hypoxia and 4 hr of reoxygenation, most of the stasis had resolved; only 3.6% of the subcutaneous venules in sickle mice remained static (P = 0.01). All of the venules were flowing again after 24 hr of reoxygenation. Vascular stasis could not be induced in the subcutaneous venules of sickle mice by tumor necrosis factor alpha (TNF-alpha). Leukocyte rolling flux and firm adhesion, manifestations of vascular inflammation, were significantly higher at baseline in sickle mice compared to normal (P < 0.01) and increased 3-fold in sickle (P < 0.01), but not in normal mice, after hypoxia-reoxygenation. Plugs of adherent leukocytes were seen at bifurcations at the beginning of static venules. Misshapen RBCs were also seen in subcutaneous venules.

Download full-text PDF

Source
http://dx.doi.org/10.1002/ajh.20143DOI Listing

Publication Analysis

Top Keywords

sickle mice
28
normal mice
16
mice hypoxia-reoxygenation
12
venules sickle
12
subcutaneous venules
12
mice
11
sickle
10
transgenic sickle
8
dorsal skin
8
skin fold
8

Similar Publications

We describe a patient with sickle cell disease (SCD) and elevated antiphospholipid antibodies (aPL) who developed multi-organ failure resembling catastrophic antiphospholipid syndrome. Autoimmune screening revealed several autoantibodies characteristic of systemic lupus erythematosus (SLE). Notably, routinely housed and unmanipulated transgenic sickle mice displayed significantly elevated titres of aPL- and SLE-associated autoantibodies.

View Article and Find Full Text PDF

Background: Sickle cell disease (SCD) and β-thalassemia patients with elevated gamma globin (HBG1/G2) levels exhibit mild or no symptoms. To recapitulate this natural phenomenon, the most coveted gene therapy approach is to edit the regulatory sequences of HBG1/G2 to reactivate them. By editing more than one regulatory sequence in the HBG promoter, the production of fetal hemoglobin (HbF) can be significantly increased.

View Article and Find Full Text PDF

The kidney plays an important role in iron homeostasis and mesangial cells (MCs) are phagocytic cells important for glomerular homeostasis. Sickle hemoglobin (HbS) modulators are promising clinical candidates for treatment of sickle cell disease. Although they prevent disease pathophysiology of HbS polymerization and red blood cell (RBC) sickling by increasing hemoglobin oxygen affinity, higher oxygen affinity can also cause transient tissue hypoxia with compensatory increases in erythropoiesis and subsequent increases in RBC turnover.

View Article and Find Full Text PDF

Sickle cell disease (SCD) is a severe hematological disorder characterized by erythrocyte sickling that causes significant morbidity and mortality. Skeletal complications of SCD include a high incidence of bone loss, especially in vertebrae, leading to fragility fractures that contribute to disease burden. Whether hydroxyurea (HU), a front-line therapy for SCD ameliorates bone disease has not been established.

View Article and Find Full Text PDF

Recently, cytosine base editors (CBEs) have emerged as a promising therapeutic tool for specific editing of single nucleotide variants and disrupting specific genes associated with disease. Despite this promise, the currently available CBEs have the significant liabilities of off-target and bystander editing activities, partly due to the mechanism by which they are delivered, causing limitations in their potential applications. In this study, we engineered optimized, soluble and stable Cas-embedded CBEs (CE_CBEs) that integrate several recent advances, which were efficiently formulated for direct delivery into cells as ribonucleoprotein (RNP) complexes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!