Background: IL-6 is a growth and survival factor for prostate cancer cells through autocrine pathways. Here, we have systematically examined the transcriptional regulation mechanisms of IL-6 in autocrine prostate cancer cells.

Methods: RT-PCR and immunohistochemical staining were used to determine IL-6 production in the cells. Serial mutant IL-6 promoter luciferase reporters were generated and their transcriptional activities were examined. The transcription factors involved in IL-6 regulation were identified with super-shift EMSA. Overexpression of NFkappaB p65 and C/EBP-beta, and blockade of NFkappaB with IkappaBalpha or CAPE were performed to demonstrate the cooperation between NFkappaB p65 and C/EBP-beta in activation of IL-6.

Results: Transcription factor regulatory sites IL6-NFkappaB, IL6-C/EBP, IL6-CREB, and IL6-AP1, are responsive to constitutively activated IL-6 production in autocrine prostate cancer cell lines. Among these sites, IL6-AP1 and IL6-C/EBP appear most important, while IL6-NFkappaB shows the least effect for IL-6 promoter activity as determined by mutant IL-6 promoter luciferase reporter assay. Nevertheless, nuclear factor NFkappaB is activated and required. Such activation is minimally dependent upon the IL6-NFkappaB site, occurring through cooperation with other transcription factors that bind the IL-6 promoter. Cooperation between NFkappaB p65 and C/EBP-beta did not require a functional IL6-NFkappaB binding site.

Conclusions: These data support a unique role for NFkappaB p65 as the primary trigger in autocrine production of IL-6 in prostate cancer cells. Furthermore, we describe a novel transcriptional activation mechanism for NFkappaB that is independent of its regulatory binding site, occurring through cooperation with other transcription factors that facilitate the neighboring regulatory site.

Download full-text PDF

Source
http://dx.doi.org/10.1002/pros.20113DOI Listing

Publication Analysis

Top Keywords

il-6 promoter
20
prostate cancer
20
nfkappab p65
16
cancer cells
12
transcription factors
12
p65 c/ebp-beta
12
il-6
11
nfkappab
8
autocrine prostate
8
il-6 production
8

Similar Publications

CpG hypomethylation at proximal promoter and 5'UTR along with IL6 signaling loop associates with MYD88 upregulation in epithelial ovarian cancer.

Sci Rep

December 2024

Department Gynecological Oncology, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, No. 55, Section 4, South People's Road, Chengdu, 610041, China.

MYD88 is an IL-6 primary response gene and, its upregulation of expression has been shown to be a poor prognostic factor in epithelial ovarian cancer (EOC). We investigated the effects of CpG methylation at the proximal promoter/5'UTR and IL-6/SP1/IRF1 signaling on upregulation of MYD88 and prognosis in EOC. We assessed CpG methylation at the proximal promoter/5'UTR of MYD88 using bisulfite sequencing/PCR in 103 EOC patients, 28 normal ovarian tissues and two EOC cell lines with differential expression of MYD88 and identified the impact of the level of CpG methylation on MYD88 upregulation by SP1/IRF1 with knockdown or blockade of IL-6.

View Article and Find Full Text PDF

More than two decades ago, in the central-eastern region of the Mediterranean island of Sardinia, a mountain area was identified where the population displays exceptional longevity, especially among men (the Longevity Blue Zone, LBZ). This community was thoroughly investigated to understand the underlying causes of the phenomenon. The present study analyzed 11 genetic markers previously associated with increased survival in several long-lived populations.

View Article and Find Full Text PDF

SUZ12-Increased NRF2 Alleviates Cardiac Ischemia/Reperfusion Injury by Regulating Apoptosis, Inflammation, and Ferroptosis.

Cardiovasc Toxicol

December 2024

Department of Cardiovascular Center, Beijing Tongren Hospital, Capital Medical University, No. 3 Chongwenmennei Street, Dongcheng District, Beijing, 100730, China.

Nuclear factor erythroid 2-related factor 2 (NRF2) is a redox-sensitive transcriptional factor that enables cells to resist oxidant responses, ferroptosis and inflammation. Here, we set out to probe the effects of NRF2 on cardiomyocyte injury under acute myocardial infarction (AMI) condition and its potential mechanism. Human cardiomyocytes were exposed to hypoxia/reoxygenation (H/R) to induce cell injury.

View Article and Find Full Text PDF

Berberine (BBR), an alkaloid derivative mostly found in Oregon grapes and barberry shoots, has several medical properties, including anti-microbial, anti-tumorigenic, and anti-inflammatory properties. As such, it is a superior alternative to presently recommended medications. From previous researches, which showed that BBR has anti-arthritic qualities by blocking a number of inflammatory signalling pathways.

View Article and Find Full Text PDF

ALDH1L2 drives HCC progression through TAM polarization.

JHEP Rep

January 2025

State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.

Background & Aims: Dysregulation of one-carbon metabolism is considered an early hallmark of mitochondrial dysfunction and cancer metabolism. ALDH1L2 belongs to the aldehyde dehydrogenase family and plays an important role in tumor progression. However, little is known about the precise role and underlying mechanisms of ALDH1L2 in hepatocellular carcinoma (HCC).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!