Small-animal models for testing macroporous ceramic bone substitutes.

J Biomed Mater Res B Appl Biomater

INSERM Research Center on Materials of Biological Interest, EMI 99 03, Dental Surgery Faculty, Place Alexis Ricordeau, 44042 Nantes, France.

Published: January 2005

The aim of this study was to compare the bone colonization of a macroporous biphasic calcium phosphate (MBCP) ceramic in different sites (femur, tibia, and calvaria) in two animal species (rats and rabbits). A critical size defect model was used in all cases with implantation for 21 days. Bone colonization in the empty and MBCP-filled defects was measured with the use of backscattered electron microscopy (BSEM). In the empty cavities, bone healing remained on the edges, and did not bridge the critical size defects. Bone growth was observed in all the implantation sites in rats (approximately 13.6-36.6% of the total defect area, with ceramic ranging from 46.1 to 51.9%). The bone colonization appeared statistically higher in the femur of rabbits (48.5%) than in the tibia (12.6%) and calvaria (22.9%) sites. This slightly higher degree of bone healing was related to differences in the bone architecture of the implantation sites. Concerning the comparison between animal species, bone colonization appeared greater in rabbits than in rats for the femoral site (48.5% vs. 29.6%). For the other two sites (the tibia and calvaria), there was no statistically significant difference. The increased bone ingrowth observed in rabbit femurs might be due to the large bone surface area in contact with the MBCP ceramics. The femoral epiphysis of rabbits is therefore a favorable model for testing the bone-bonding capacity of materials, but a comparison with other implantation sites is subject to bias. This study shows that well-conducted and fully validated models with the use of small animals are essential in the development of new bone substitutes.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jbm.b.30118DOI Listing

Publication Analysis

Top Keywords

bone colonization
16
bone
12
implantation sites
12
bone substitutes
8
tibia calvaria
8
animal species
8
critical size
8
bone healing
8
colonization appeared
8
sites
6

Similar Publications

Biodegradable Temporizing Matrix in Postoncological Scalp Reconstruction: A Case Series.

Plast Reconstr Surg Glob Open

January 2025

From the Department of Plastic Surgery, Hull University Teaching Hospitals, East Riding of Yorkshire, United Kingdom.

Biodegradable temporizing matrix (BTM) is a synthetic biodegradable dermal matrix that helps develop a non-skin graft amenable wound bed (eg, over tendon or bone) into a graftable wound bed, by acting as an inert scaffold for angiogenesis and formation of granulation tissue. There is currently a paucity of evidence to encourage its use in scalp defects following skin malignancy excision. This retrospective analysis aimed to evaluate the utility of BTM in this patient subset.

View Article and Find Full Text PDF

Background: Prosthetic joint infection is a serious complication that can arise after total joint replacement surgery. When bacteria colonise an orthopaedic implant, they form biofilms that protect them from their environment, making them difficult to remove. Treatment is further complicated by a global rise of antimicrobial resistance.

View Article and Find Full Text PDF

Biosynthesis of Lysosomally Escaped Apoptotic Bodies Inhibits Inflammasome Synthesis in Macrophages.

Research (Wash D C)

January 2025

Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P. R. China.

Hyperglycemia and bacterial colonization in diabetic wounds aberrantly activate Nod-like receptor protein 3 (NLRP3) in macrophages, resulting in extensive inflammatory infiltration and impaired wound healing. Targeted suppression of the NLRP3 inflammasome shows promise in reducing macrophage inflammatory disruptions. However, challenges such as drug off-target effects and degradation via lysosomal capture remain during treatment.

View Article and Find Full Text PDF

Objective: Removal of a transcutaneous osseintegrated endo-fix stem (ESKA Orthopaedic, Lübeck, Germany) following a fatigue fracture of the implant, whilst protecting the residual femur bone to allow transcutaneous osseointegrated prosthesis system (TOPS) reimplantation.

Indications: A patient's request for a further TOPS implantation following a fatigue fracture of a circular osseointegrated implant stem.

Contraindications: Impending destruction of the bone tube through mobilisation of the femoral implant stem with insufficient thickness of the cortical wall (< 2-3 mm).

View Article and Find Full Text PDF

Bone defects caused by trauma, infection, or tumors present a major clinical challenge. Titanium (Ti) implants are widely used due to their excellent mechanical properties and biocompatibility; however, their high elastic modulus, low surface bioactivity, and susceptibility to infection hinder osseointegration and increase failure rates. There is an increasing demand for implants that can resist bacterial infection while promoting osseointegration.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!