Histone deacetylases (HDACs) are a family of enzymes that catalyze the removal of acetyl groups from core histones, resulting in change of chromatin structure and gene transcription activity. In the heart, HDACs are targets of hypertrophic signaling, and their nonspecific inhibition by trichostatin A (TSA) attenuates hypertrophy of cultured cardiac myocytes. In this study, we examined the effect of TSA on two major determinants of cardiac contractility: alpha-myosin heavy chain (MHC) expression and microtubular composition and organization. TSA upregulated the expression of alpha-MHC in cultured cardiac myocytes, as well as in an in vivo model of hypothyroid rats. Studies designed to delineate mechanisms of alpha-MHC induction by TSA revealed an obligatory role of early growth response factor-1 on activation of the alpha-MHC promoter. Concurrently, TSA downregulated the expression of alpha- and beta-tubulins and prevented the induction of tubulins by a hypertrophy agonist, ANG II. The ANG II-mediated increased proportion of alpha- and beta-tubulins associated with polymerized microtubules was also markedly reduced after treatment of cells by TSA. Results obtained from immunofluorescent microscopy indicated that TSA had no noticeable effect on the organization of cardiac microtubules in control cells, whereas it prevented the ANG II-induced dense parallel linear arrays of microtubules to a profile similar to that of controls. Together, these results demonstrate that inhibition of HDACs by TSA regulates the cardiac alpha-MHC and tubulins in a manner predictive of improved cardiac contractile function. These studies improve our understanding of the role of HDACs on cardiac hypertrophy with implications in development of new therapeutic agents for treatment of cardiac abnormalities.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1152/ajpheart.00789.2004 | DOI Listing |
Acta Biochim Biophys Sin (Shanghai)
December 2024
Fibrosis is the main pathological feature of aortic stiffness, which is a common extracardiac comorbidity of heart failure with preserved ejection fraction (HFpEF) and a contributor to left ventricular (LV) diastolic dysfunction. Systemic low-grade inflammation plays a crucial role in the pathogenesis of HFpEF and the development of vascular fibrosis. In this study, we investigate the inflammatory mechanism of aortic fibrosis in HFpEF using a novel mouse model.
View Article and Find Full Text PDFZh Nevrol Psikhiatr Im S S Korsakova
December 2024
Research Institute for Complex Issues of Cardiovascular Diseases, Kemerovo, Russia.
Objective: To compare biomarkers of neurovascular unit (NVU) - S100β, NSE, BDNF and indicators of the brain electrical activity in patients who underwent coronary artery bypass grafting (CABG) depending on the use of different versions of multi-tasking cognitive training (CT).
Material And Methods: The study included 89 people, of whom 47 completed the CTI (postural and three cognitive tasks (counting backwards, verbal fluency and the open-ended task «Unusual use of an ordinary object») and 42 patients, who underwent CTII (visuomotor reaction and the same cognitive tasks) in the early postoperative CABG period. The patients of both groups underwent complex testing of psychomotor, executive functions, attention, short-term memory and EEG study in the perioperative period of CABG.
Adv Sci (Weinh)
December 2024
Department of Cardiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China.
Aortic aneurysm is a life-threatening disease caused by progressive dilation of the aorta and weakened aortic walls. Its pathogenesis involves an imbalance between connective tissue repair and degradation. CD34 cells comprise a heterogeneous population that exhibits stem cell and progenitor cell properties.
View Article and Find Full Text PDFAdv Sci (Weinh)
December 2024
Graduate School of Biomedical Engineering, Faculty of Engineering, and Tyree Institute of Health Engineering (IHealthE), UNSW Sydney, Kensington Campus, Sydney, NSW, 2052, Australia.
Hemodynamic stabilization is crucial in managing acute cardiac events, where compromised blood flow can lead to severe complications and increased mortality. Conditions like decompensated heart failure (HF) and cardiogenic shock require rapid and effective hemodynamic support. Current mechanical assistive devices, such as intra-aortic balloon pumps (IABP) and extracorporeal membrane oxygenation (ECMO), offer temporary stabilization but are limited to short-term use due to risks associated with prolonged blood contact.
View Article and Find Full Text PDFIran Biomed J
December 2024
Quchan School of nursing, Mashhad University of Medical Sciences, Mashhad, Iran.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!