A functional microcirculation is vital to the survival of mammalian tissues. In vivo video microscopy is often used in animal models to assess microvascular function, providing real-time observation of blood flow in normal and diseased tissues. To extend the capabilities of in vivo video microscopy, we have developed a contrast-enhanced system with postprocessing video analysis tools that permit quantitative assessment of microvascular geometry and function in vital organs and tissues. FITC-labeled dextran (250 kDa) was injected intravenously into anesthetized mice to provide intravascular fluorescence contrast with darker red blood cell (RBC) motion. Digitized video images of microcirculation in a variety of internal organs (e.g., lung, liver, ovary, and kidney) were processed using computer-based motion correction to remove background respiratory and cardiac movement. Stabilized videos were analyzed to generate a series of functional images revealing microhemodynamic parameters, such as plasma perfusion, RBC perfusion, and RBC supply rate. Fluorescence contrast revealed characteristic microvascular arrangements within different organs, and images generated from video sequences of liver metastases showed a marked reduction in the proportion of tumor vessels that were functional. Analysis of processed video sequences showed large reductions in vessel volume, length, and branch-point density, with a near doubling in vessel segment length. This study demonstrates that postprocessing of fluorescence contrast video sequences of the microcirculation can provide quantitative images useful for studies in a wide range of model systems.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1152/ajpheart.01022.2003 | DOI Listing |
ACS Nano
January 2025
State Key Laboratory of Extreme Photonics and Instrumentations, Centre for Optical and Electromagnetic Research, College of Optical Science and Engineering, International Research Center for Advanced Photonics, Zhejiang University, Hangzhou 310058, China.
Multichannel imaging in the second near-infrared (NIR-II) window offers vital and comprehensive information for complex surgical environments, yet a simple, high-quality, video-rate multichannel imaging method with low safety risk remains to be proposed. Centered at the superior NIR-IIx window of 1400-1500 nm, triple-channel imaging coordinated with 1000-1100 and 1700-1880 nm (NIR-IIc) achieves exceptional clarity and an impressive signal-to-crosstalk ratio as high as 22.10.
View Article and Find Full Text PDFSci Rep
December 2024
State Key Laboratory of Precision Measurement Technology and Instruments, Tianjin University, Tianjin, 300072, China.
Microbubble-facilitated sonoporation is a rapid, versatile, and non-viral intracellular delivery technique with potential for clinical and ex vivo cell engineering applications. We developed a micropatterning-based approach to investigate the impact of cell shape on sonoporation efficacy. Cationic microbubbles were employed to enhance sonoporation by binding to the cell membrane electrostatically.
View Article and Find Full Text PDFInvest Ophthalmol Vis Sci
December 2024
Department of Ophthalmology, Aarhus University Hospital, Aarhus, Denmark.
Purpose: Previous in vitro studies on porcine retinal arterioles have shown that the frequency and amplitude of retinal vasomotion can be affected by hypoxia and nitric oxide (NO). However, it is unknown whether these effects can be reproduced in humans in vivo.
Methods: Video recordings of retinal arterioles from 40 healthy subjects were studied before and during breathing of a hypoxic gas mixture consisting of 12.
ACS Chem Biol
December 2024
Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, Virginia 22908, United States.
Bioluminescence imaging (BLI) is a powerful, noninvasive imaging method for animal studies. NanoLuc luciferase and its derivatives are attractive bioluminescent reporters recognized for their efficient photon production and ATP independence. However, utilizing them for animal imaging poses notable challenges.
View Article and Find Full Text PDFJ Vis Exp
December 2024
School of Biological Science and Medical Engineering, Southeast University; Mathematical Sciences Department, Worcester Polytechnic Institute.
Quantifying the mechanical properties of coronary arterial walls could provide meaningful information for the diagnosis, management, and treatment of coronary artery diseases. Since patient-specific coronary samples are not available for patients requiring continuous monitoring, direct experimental testing of vessel material properties becomes impossible. Current coronary models typically use material parameters from available literature, leading to significant mechanical stress/strain calculation errors.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!