Light absorbed by retinal photoreceptors triggers a cascade of reactions that initiate cGMP hydrolysis, cation channel closure and membrane hyperpolarization. Down-regulation of the cascade involves additional proteins that interfere with amplification along the cascade. Pinealocytes are activated by norepinephrine during the dark phase of the day/night cycle. Mature pinealocytes of the mammalian pineal express the known photoreceptor proteins that are implicated in down-regulation of the visual cascade, but the cascade components that produce cGMP hydrolysis and membrane hyperpolarization are absent. Pinealocytes accumulate cyclic AMP minimally when norepinephrine activates their beta adrenergic receptors alone, but the response is potentiated by the simultaneous activation of their alpha-1 adrenergic receptors. A model is proposed whereby phosducin, a phosphoprotein that binds the beta,gamma subunit of G-proteins, could modulate the synthesis of cyclic AMP by buffering the amount of beta,gamma G-protein subunits that are available for activating adenylate cyclase.

Download full-text PDF

Source
http://dx.doi.org/10.1007/BF00966868DOI Listing

Publication Analysis

Top Keywords

cgmp hydrolysis
8
membrane hyperpolarization
8
cyclic amp
8
adrenergic receptors
8
cascade
5
photoreceptors retina
4
pinealocytes
4
retina pinealocytes
4
pinealocytes pineal
4
pineal gland
4

Similar Publications

The carboxyl terminus of Hsc70-interacting protein (CHIP) is pivotal for managing misfolded and aggregated proteins via chaperone networks and degradation pathways. In a preclinical rodent model of CHIP-related ataxia, we observed that CHIP mutations lead to increased levels of phosphodiesterase 9A (PDE9A), whose role in this context remains poorly understood. Here, we investigated the molecular mechanisms underlying the role of PDE9A in CHIP-related ataxia and demonstrated that CHIP binds to PDE9A, facilitating its polyubiquitination and autophagic degradation.

View Article and Find Full Text PDF

Phosphodiesterase 2 A (PDE2A) function is stimulated by cGMP to catabolize cAMP. However, neurological and neurochemical effects of PDE2A deficiency are poorly understood. To address this gap, we studied behavioral characteristics and cerebral morpho-chemical changes of adult male heterozygous C57BL/6-PDE2A+/- (HET), and wild type C57BL/6-PDE2A+/+ (WT) mice.

View Article and Find Full Text PDF

Multimodal action of phosphodiesterase 5 inhibitors against neurodegenerative disorders: An update review.

J Biochem Mol Toxicol

November 2024

Division of Pharmacology, Institute of Pharmaceutical Research, GLA University, Chaumuhan, Mathura, India.

Article Synopsis
  • - PDE5 is an enzyme that breaks down cGMP, a molecule crucial for enhancing neural signals and influencing learning and memory processes, and it's found in the brain and in the smooth muscle of the corpus cavernosum.
  • - PDE5 inhibitors, which prevent the breakdown of cGMP, can enhance nitric oxide effects, providing anti-inflammatory and neuroprotective benefits, potentially addressing neurodegenerative disorders, which currently lack curative treatments.
  • - The review explores how PDE5 inhibitors may act as disease-modifying agents for conditions like Alzheimer's and Parkinson's diseases by simultaneously influencing both cAMP and cGMP pathways, potentially improving neurological functions.
View Article and Find Full Text PDF

Background: Phosphodiesterases (PDEs) are enzymes that catalyze the hydrolysis of cyclic adenosine monophosphate AMP (cAMP) and/or cyclic guanosine monophosphate (cGMP). PDE inhibitors can mitigate chronic pain and depression when these disorders occur individually; however, there is limited understanding of their role in concurrent chronic pain and depression. We aimed to evaluate the mechanisms of action of PDE using 2 mouse models of concurrent chronic pain and depression.

View Article and Find Full Text PDF

Patients with autoimmune disease-related interstitial lung disease may develop pulmonary fibrosis, which may become progressive. Progressive pulmonary fibrosis (PPF) is associated with poor outcomes. Antifibrotic therapies have shown efficacy as treatments for PPF in patients with autoimmune diseases, but new treatments are needed to slow or halt disease progression.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!