Activity of macrocyclic jatrophane diterpenes from Euphorbia kansui in a TrkA fibroblast survival assay.

J Nat Prod

Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, People's Republic of China.

Published: September 2004

Three new macrocyclic diterpenes, kansuinins F (1), G (2), and H (3), together with four known jatrophane diterpenes, kansuinins D (4), E (5), and A (6) and 3beta,5alpha,7beta,15beta-tetraacetoxy-9alpha-nicotinoyloxyjatropha-6(17)-11E-dien-14-one, were isolated from the roots of Euphorbia kansui. Compounds 1 and 2 were assigned as 6(17)-en-11,12-epoxy-14-one-type jatrophane diterpenes, and compound 3 as a 6(17)-en-11,14-epoxy-12-one jatrophane diterpene. The structures of compounds 1-3 and the relative configurations of compounds 4 and 5 were determined by spectral data analysis. Kansuinin E (5) exhibited a specific survival effect on fibroblasts that expressed TrkA, a high-affinity receptor for nerve growth factor.

Download full-text PDF

Source
http://dx.doi.org/10.1021/np030541cDOI Listing

Publication Analysis

Top Keywords

jatrophane diterpenes
12
euphorbia kansui
8
diterpenes kansuinins
8
activity macrocyclic
4
jatrophane
4
macrocyclic jatrophane
4
diterpenes
4
diterpenes euphorbia
4
kansui trka
4
trka fibroblast
4

Similar Publications

Macrocyclic Diterpenoids from Possessing Activity Towards Autophagic Flux.

Int J Mol Sci

December 2024

State Key Laboratory of Functions and Applications of Medicinal Plants & College of Pharmacy, Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, Guiyang 550014, China.

Euphjatrophanes H-L (-), four new jatrophane-type and one new lathyrane-type diterpenoid, were isolated from , along with eight known diterpenoids (-). Their structures were established on the basis of extensive spectroscopic analysis and X-ray crystallographic experiments. All compounds were subjected to bioactivity evaluation using flow cytometry in autophagic flux assays with HM mCherry-GFP-LC3 cells, the human microglia cells which stably expressed the tandem monomeric mCherry-GFP-tagged LC3.

View Article and Find Full Text PDF

Jatrophane diterpenoids from Jatropha curcas with multidrug resistance reversal activity.

Fitoterapia

January 2025

State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People's Republic of China. Electronic address:

Nine jatrophane diterpenoids, including six previously undescribed compounds, were extracted and purified from whole plants of Jatropha curcas L. Their structures including absolute configurations were characterized by spectroscopic, quantum chemical Nuclear Magnetic Resonance Spectroscopy, Electronic Circular Dichroism calculation, and Single Crystal X-Ray Diffraction methods. These compounds were evaluated for their ability to reverse multidrug resistance.

View Article and Find Full Text PDF

Promoting endogenous neurogenesis for brain repair is emerging as a promising strategy to mitigate the functional impairments associated with various neurological disorders characterized by neuronal death. Diterpenes featuring tigliane, ingenane, jatrophane and lathyrane skeletons, frequently found in Euphorbia plant species, are known protein kinase C (PKC) activators and exhibit a wide variety of pharmacological properties, including the stimulation of neurogenesis. Microbial transformation of these diterpenes represents a green and sustainable methodology that offers a hitherto little explored approach to obtaining novel derivatives and exploring structure-activity relationships.

View Article and Find Full Text PDF

PCSK9 has been recognized as an efficient target for hyperlipidemia and related cardiovascular/cerebrovascular diseases. However, PCSK9 inhibitors in the clinic are all biological products, and no small molecules are available yet. In the current work, we discovered that the crude extract of () promoted LDL uptake and then obtained 8 new and 12 known jatrophane diterpenoids by activity-guided isolation.

View Article and Find Full Text PDF

Natural products represent a rich source of bioactive compounds, covering a large chemical space. Even if challenging, this diversity can be extended by applying chemical modifications. However, these studies generally require multigram amounts of isolated natural products and face frequent testing failures.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!