Pico- and nanosecond time-resolved resonance Raman (TR3) spectroscopy have been utilized to study the dynamics and structure of p-hydroxyacetophenone (HA) and the p-hydroxyphenacyl-caged phototrigger compound p-hydroxyphenacyl diethyl phosphate (HPDP) in acetonitrile solution. Transient intermediates were detected and attributed to the triplet states of HA and HPDP. Nanosecond-TR3 measurements were done for two isotopically substituted HA molecules to help better assign the triplet state carbonyl C=O stretching and the ring related vibrational modes. The dynamics of formation and the spectral characteristics for the triplet states were found to be similar for the HA and HPDP. The temporal evolution at very early picosecond time scale indicates there is rapid intersystem crossing (ISC) conversion and subsequent relaxation of the excess energy of the initially produced energetic triplet state. B3LYP/6-311G** density functional theory (DFT) calculations were done to determine the structures and vibrational frequencies for both the triplet and ground states of HA and HPDP. The calculated spectra reproduce the experimental spectra and the observed isotopic shifts reasonably well and were used to make tentative assignments to all the experimentally observed features. The triplet states were found to have extensive conjugated pipi* nature with a single-bond-like carbonyl CO bond. We briefly compare the triplet structure and formation dynamics of HA and HPDP as well as the conformational changes upon going from the ground state to the triplet state. We discuss our present results in relation to the initial pathway for the p-hydroxyphenacyl photodeprotection process. We also compare and discuss the properties of the HA pipi* triplet state relative to the published results of other aromatic carbonyl compounds.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jo049331a | DOI Listing |
J Phys Chem Lett
January 2025
State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200241, China.
Flavonoids, a group of natural pigments, have attracted notable attention for their intrinsic fluorescent bioactive properties and potential therapeutic implications. Recent studies have suggested that the photoexcitation of specific flavonoids can also lead to the formation of triplet states, thereby potentially enhancing their applications in photoactivated antioxidant mechanisms. However, the crucial mechanism details about triplet state formation are still poorly understood.
View Article and Find Full Text PDFJ Colloid Interface Sci
January 2025
Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123 China; College of Pharmaceutical Sciences, Soochow University, Suzhou 215123 China. Electronic address:
Phototherapy including photothermal therapy (PTT) and photodynamic therapy (PDT) is widely used for cancer treatment because of its non-invasiveness, spatiotemporal controllability, and low side effects. However, the PTT and PDT capabilities of photosensitizers (PSs) compete so it's still a crucial challenge to simultaneously enhance the PDT and PTT capabilities of PSs. In this work, donor-π-acceptor (D-π-A)-based boron dipyrromethene (BODIPY) dyes were developed via molecular engineering and applied for enhanced phototherapy of triple-negative breast cancer.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Radiation Laboratory, University of Notre Dame, Notre Dame, Indiana 46556, United States.
Modulation of singlet and triplet energy transfer from excited semiconductor nanocrystals to attached dye molecules remains an important criterion for the design of light-harvesting assemblies. Whereas one can consider the selection of donor and acceptor with favorable energetics, spectral overlap, and kinetics of energy transfer as a means to direct the singlet and triplet energy transfer pathways, it is not obvious how to control the singlet and triplet characteristics of the donor semiconductor nanocrystal itself. By doping CsPb(ClBr) nanocrystals with Mn, we have now succeeded in increasing the triplet characteristics of semiconductor nanocrystals.
View Article and Find Full Text PDFJ Phys Chem Lett
January 2025
Mulliken Center for Theoretical Chemistry, Clausius Institute for Physical and Theoretical Chemistry, Rheinische Friedrich-Wilhelms Universität Bonn, Beringstraße 4, 53115 Bonn, Germany.
With their narrow-band emission, high quantum yield, and good chemical stability, multiresonance thermally activated delayed fluorescence (MR-TADF) emitters are promising materials for OLED technology. However, accurately modeling key properties, such as the singlet-triplet (ST) energy gap and fluorescence energy, remains challenging. While time-dependent density functional theory (TD-DFT), the workhorse of computational materials science, suffers from fundamental issues, wave function-based coupled-cluster (CC) approaches, like approximate CC of second-order (CC2), are accurate but suffer from high computational cost and unfavorable scaling with system size.
View Article and Find Full Text PDFAdv Mater
January 2025
Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China.
Herein, a parallel "bifunctional group" modulation method is proposed to achieve controlled modulation of the emission wavelength and full-width at half-maximum (FWHM) values. As a result, three proof-of-concept emitters, namely DBNDS-TPh, DBNDS-DFPh, and DBNDS-CNPh, are designed and synthesized, with the first functional dibenzo[b,d]thiophene unit concurrently reducing the bandgap and elevate their triplet state energy. A second functional group 1,1':3',1″-triphenyl, and electron acceptors 1,3-difluorobenzene and benzonitrile, respectively, to deepen the HOMO and LUMO levels.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!