The effect of the channel width on the performance of separation by micro-thermal field-flow fractionation (micro-TFFF) of the carboxylated polystyrene latex particles was studied by using the particles in diameter range from 100 nm to 3800 nm. It has been shown that the retention order follows the anticipated polarization, steric, and focusing mechanism in the corresponding size range and under the specific conditions, appropriate to each channel thickness. However, the attractive interactions of the particles with the accumulation wall can complicate the separation as has been proven by the experiments carried out by using the carrier liquids of different ionic strengths. Three channel thicknesses (0.025, 0.100, and 0.250 mm) were tested thus imposing the volumes of micro-channels of roughly 9, 37, and 92 microl. Such an experimental investigation has never been performed with respect to the applicability of the TFFF within an extended range of molar masses or particle sizes. The advantages and drawbacks of different channel widths are discussed with respect to the performance of separation of micro-TFFF but also by taking into account the practical requirements of the construction of the micro-TFFF channel. The principal finding is that very thin channel (w = 0.025 mm) substantially reduces the range of particle sizes or polymer molar masses that can effectively be separated due to the mixed separation mechanism, steric exclusion being effective from smaller particle size. The found dependence of the resolution on the imposed experimental conditions including the channel width has allowed the elucidation of some peculiar results published in the literature, which were contradictory with regard to the known theoretical and experimental findings.

Download full-text PDF

Source

Publication Analysis

Top Keywords

channel width
12
channel
8
polarization steric
8
steric focusing
8
micro-thermal field-flow
8
field-flow fractionation
8
performance separation
8
molar masses
8
particle sizes
8
width retention
4

Similar Publications

Ultra-wide range control of topological acoustic waveguidesa).

J Acoust Soc Am

January 2025

Jianglu Mechanical Electrical Group Company Limited, Xiangtan 411105, China.

Topological acoustic waveguides have a potential for applications in the precise transmission of sound. Currently, there is more attention to multi-band in this field. However, achieving tunability of the operating band is also of great significance.

View Article and Find Full Text PDF

Multivalued logic (MVL) systems, in which data are processed with more than two logic values, are considered a viable solution for achieving superior processing efficiency with higher data density and less complicated system complexity without further scaling challenges. Such MVL systems have been conceptually realized by using negative transconductance (NTC) devices whose channels consist of van der Waals (vdW) heterojunctions of low-dimensional semiconductors; however, their circuit operations have not been quite ideal for driving multiple stages in real circuit applications due to reasons such as a reduced output swing and poorly defined logic states. Herein, we demonstrate ternary inverter circuits with near rail-to-rail swing and three distinct logic states by employing vdW p-n heterojunctions of single-walled carbon nanotubes (SWCNT) and MoS where the SWCNT layer completely covers the MoS layer.

View Article and Find Full Text PDF

2H-NMR as a Practical Tool for Following MOF Formation: A Case Study of UiO-66.

Angew Chem Int Ed Engl

January 2025

Memorial University of Newfoundland, Chemistry, Department of Chemistry, 230 Elizabeth avenue, A1B 3X7, St. John's, CANADA.

Developing the mechanism for MOF formation is crucial for the rapid development of new materials. This work demonstrates that Deuterium-NMR spectroscopy is the optimal inter-laboratory methodology for understanding the in-situ kinetics of metal-organic framework (MOF) formation. This method is facile, affordable, and allows for the isolation and monitoring of individual reagents by using one deuterated component while the remaining components are protonated.

View Article and Find Full Text PDF

The present article deals with the modulation of oscillatory electroosmotic flow (EOF) and solute dispersion across a nanochannel filled with an electrolyte solution surrounded by a layer of a dielectric liquid. The dielectric permittivity of the liquid layer adjacent to supporting rigid walls is taken to be lower than that of the electrolyte solution. Besides, the aforesaid liquid layer may bear additional mobile charges, , free lipid molecules, charged surfactant molecules , which in turn lead to a nonzero charge along the liquid-liquid interface.

View Article and Find Full Text PDF

Construction and experimental validation of electrochemical cells with multiple electrodes in a microfluidic channel is described. Details of the fabrication of the electrodes and polydimethylsiloxane channel using soft lithography methods are given. Calibration of the collection efficiencies and transit times between electrodes validate the use of these cells for fast electrochemical detection of soluble species.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!