Background: The activity of synthetic antisense oligonucleotides (splicomers) designed to block pre-mRNA splicing at specific exons has been demonstrated in a number of model systems, including constitutively spliced exons in mouse dystrophin RNA. Splicomer reagents directed to Duchenne muscular dystrophy (DMD) RNAs might thus circumvent nonsense or frame-shifting mutations, leading to therapeutic expression of partially functional dystrophin, as occurs in the milder, allelic (Becker) form of the disease (BMD).

Methods: Functional and hybridisation array screens have been used to select optimised splicomers directed to exon 23 of dystrophin mRNA which carries a nonsense mutation in the mdx mouse. Splicomers were transfected into cultured primary muscle cells, and dystrophin mRNA assessed for exon exclusion. Splicomers were also administered to the muscles of mdx mice.

Results: Oligonucleotide array analyses with dystrophin pre-mRNA probes revealed strong and highly specific hybridisation patterns spanning the exon 23/intron 23 boundary, indicating an open secondary structure conformation in this region of the RNA. Functional screening of splicomer arrays by direct analysis of exon 23 RNA splicing in mdx muscle cultures identified a subset of biologically active reagents which target sequence elements associated with the 5' splice site region of dystrophin intron 23; splicomer-mediated exclusion of exon 23 was specific and dose-responsive up to a level exceeding 50% of dystrophin mRNA, and Western blotting demonstrated de novo expression of dystrophin protein at 2-5% of wild-type levels. Direct intramuscular administration of optimised splicomer reagents in vivo resulted in the reappearance of sarcolemmal dystrophin immunoreactivity in > 30% of muscle fibres in the mdx mouse

Conclusions: These results suggest that correctly designed splicomers may have direct therapeutic value in vivo, not only for DMD, but also for a range of other genetic disorders.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jgm.603DOI Listing

Publication Analysis

Top Keywords

dystrophin mrna
12
dystrophin
10
splicing mdx
8
mdx mouse
8
target sequence
8
splicomer reagents
8
exon
6
splicomers
6
mdx
5
therapeutic inhibition
4

Similar Publications

Duchenne muscular dystrophy (DMD) is a severe genetic muscle disease occurring due to mutations of the dystrophin gene. There is no cure for DMD. Using a dystrophinutrophin (DKO-Hom) mouse model, we investigated the PGE2/EP2 pathway in the pathogenesis of dystrophic muscle and its potential as a therapeutic target.

View Article and Find Full Text PDF

Two Novel Mouse Models of Duchenne Muscular Dystrophy with Similar Dmd Exon 51 Frameshift Mutations and Varied Phenotype Severity.

Int J Mol Sci

December 2024

Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia.

Duchenne muscular dystrophy (DMD) is a severe X-linked genetic disorder caused by an array of mutations in the dystrophin gene, with the most commonly mutated regions being exons 48-55. One of the several existing approaches to treat DMD is gene therapy, based on alternative splicing and mutant exon skipping. Testing of such therapy requires animal models that carry mutations homologous to those found in human patients.

View Article and Find Full Text PDF

Objective: Duchenne muscular dystrophy (DMD) is a rare X-linked neurodegenerative disorder caused by mutations in the gene. This study examined the efficacy and safety of ataluren, the first oral treatment for DMD with nonsense mutations (nmDMD), in patients in the Middle East.

Methods: This retrospective longitudinal study assessed the outcomes of seven boys with nmDMD who received treatment with ataluren and follow-up at a single center since 2016.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates long non-coding RNAs (lncRNAs) and their roles in sustaining dystrophin protein stability and influencing muscle cell growth and development, focusing on Duchenne muscular dystrophy (DMD) using DMD/mdx mouse models.
  • A total of 554 differentially expressed lncRNAs were identified, with 373 upregulated and 181 downregulated, some of which have potential regulatory roles in crucial genes connected to DMD.
  • The research utilized various tools to predict the regulatory networks involving lncRNAs, miRNAs, and mRNAs, revealing that certain lncRNAs could indirectly regulate important genes associated with DMD, opening new avenues for therapies.
View Article and Find Full Text PDF

Skeletal muscle development is spotlighted in mammals since it closely relates to animal health and economic benefits to the breeding industry. Researchers have successfully unveiled many regulatory factors and mechanisms involving myogenesis. However, the effect of N-methyladenosine (mA) modification, especially demethylase and its regulated genes, on muscle development remains to be further explored.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!