Peroxisomes, also termed as microbodies, are now known to carry out several specialized metabolic activities that are vital to cellular function. A defect in peroxisomal function leads to development of a fatal human disease, and a number of peroxisomal disorders are now linked to inherited peroxisomal enzyme abnormalities. Peroxisomal enzyme activities are also altered during pathophysiological conditions through various endogenously produced bio-molecules such as nitric oxide (NO). NO produced by cytokines or NO-donors is known to modulate peroxisomal functions, and these effects of NO are mediated through cGMP. We are reporting for the first time that L-carnitine (1-5 mm) prevents cGMP-mediated impairment of peroxisomal enzyme activities. Cyclic GMP (250-1000 muM) significantly inhibited (p < 0.01) the specific activities of catalase, acyl CoA oxidase and dihydroxyacetone-phosphate acyltransferase (DHAPATase) in human dermal fibroblasts, and treatment of cells with 1-5 mM of carnitine significantly (p < 0.001) reduced the inhibitory effects of cGMP on peroxisomal enzyme activities. These findings suggest that carnitine, previously thought to participate only in fatty acid oxidation, may in fact be regulating other cellular events including oxidative stress, and could possibly be used to correct cytokine-impaired peroxisomal functions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/cbf.1117 | DOI Listing |
Molecules
December 2024
Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul 03760, Republic of Korea.
Leveille is a traditional medicine used to treat migraine headache and dysmenorrhea. In this study, three polyacetylenes, methyl (10,9,16)-16-acetoxy-9-hydroxyoctadeca-10,17-dien-12,14-diynoate (), methyl (10,9,16)-9,16-dihydroxyoctadeca-10-en-12,14-diynoate (), and methyl (10,9,16)-9,16-dihydroxyoctadeca-10,17-dien-12,14-diynoate (), were isolated from the aerial parts of . , together with seven known compounds (-).
View Article and Find Full Text PDFLife (Basel)
December 2024
Xi'an Botanical Garden of Shaanxi Province, Institute of Botany of Shaanxi Province, No. 17 Cuihua South Road, Xi'an 710061, China.
is a traditional Chinese medicinal plant of considerable application value and commercial potential, primarily due to its production of various bioactive compounds, particularly dammarane-type triterpenoid saponins that are structurally analogous to ginsenosides. Oxidosqualene cyclase (OSC), a pivotal enzyme in the biosynthesis of triterpenoid metabolites in plants, catalyzes the conversion of oxidosqualene into triterpenoid precursors, which are essential components of the secondary metabolites found in . To elucidate the role of gene family members in the synthesis of gypenosides within , this study undertook a comprehensive genome-wide identification and characterization of genes within and compared their expression levels across populations distributed over different geographical regions by both transcriptome sequencing and qRT-PCR experimental validation.
View Article and Find Full Text PDFBiomedicines
December 2024
Department of Biochemistry, Microbiology and Physics, Faculty of Agriculture, Trakia University, 6000 Stara Zagora, Bulgaria.
() strains and their postbiotics show potential for managing metabolic disorders such as diabetes and obesity. Two newly isolated strains, M2.1 and P4, were yielded from anthills in Sinite Kamani National Park, Bulgaria.
View Article and Find Full Text PDFBiomolecules
November 2024
Department of Pediatrics, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15224, USA.
Lysine succinylation, and its reversal by sirtuin-5 (SIRT5), is known to modulate mitochondrial fatty acid β-oxidation (FAO). We recently showed that feeding mice dodecanedioic acid, a 12-carbon dicarboxylic acid (DC) that can be chain-shortened four rounds to succinyl-CoA, drives high-level protein hypersuccinylation in the peroxisome, particularly on peroxisomal FAO enzymes. However, the ability of SIRT5 to reverse DC-induced peroxisomal succinylation, or to regulate peroxisomal FAO in this context, remained unexplored.
View Article and Find Full Text PDFAnimals (Basel)
December 2024
Department of Animal Molecular Biology, National Research Institute of Animal Production, Krakowska 1, 32-083 Balice, Poland.
The gene is vital for fatty acid metabolism and is linked to environmental stress and physical exertion adaptation. The p.Asp237Ser variant (rs782885985) in is associated with increased enzyme activity and reactive oxygen species (ROS) levels.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!