von Hippel-Lindau tumor suppressor protein stimulation by thrombin involves RhoA activation.

Int J Cancer

Laboratoire de Médecine Moléculaire, Hôpital Sainte-Justine, Université du Québec à Montréal, Montréal, Québec.

Published: December 2004

Inactivation of the von Hippel-Lindau (VHL) tumor suppressor gene is associated with the development of vascular tumors including renal cell carcinoma. Aside from the role played by the VHL protein (pVHL) in negative regulation of hypoxia-inducible factor, 41F-1alpha, pVHL also takes part in cytoskeletal organization. Thrombin is a serine protease involved in angiogenesis and in cancer progression and its action is mediated by the protease-activated receptors (PARs). In several cell types, thrombin induces reorganization of the cytoskeleton along with RhoA activation. Thus, we conducted an investigation on the capacity of thrombin to regulate pVHL expression. Our results demonstrated that VHL mRNA and protein levels were increased by thrombin in cultured renal cancer cells. Cytoplasmic pVHL was redistributed to perinuclear regions and membrane fractions following thrombin treatments. Stimulation of Caki-1 cells with PAR1, PAR2 and PAR4 agonist peptides demonstrated that PAR1 was the receptor involved in thrombin-induced pVHL expression. Western blot analysis confirmed that these cells express PAR1 and that its expression was increased by thrombin. PAR1 activation by both thrombin and an agonist peptide stimulated renal cancer cell invasion through Matrigel. Interestingly, the upregulation of pVHL was dependent on RhoA because C3 exotoxin abolished pVHL induction. However, the pharmacological Rho kinase inhibitor, Y27632, did not influence pVHL expression in the presence of thrombin, suggesting that other RhoA effectors were involved in the process. Together, these results demonstrate that thrombin induces both pVHL expression via PAR1/RhoA activation as well as the stimulation of renal cancer cell invasion suggesting a role for thrombin in tumor invasion.

Download full-text PDF

Source
http://dx.doi.org/10.1002/ijc.20468DOI Listing

Publication Analysis

Top Keywords

pvhl expression
16
renal cancer
12
thrombin
11
pvhl
9
von hippel-lindau
8
tumor suppressor
8
rhoa activation
8
thrombin induces
8
increased thrombin
8
cancer cell
8

Similar Publications

Mutations in tumor suppressor genes Vhl and Rassf1a cause DNA damage, chromosomal instability and induce gene expression changes characteristic of clear cell renal cell carcinoma.

Kidney Int

December 2024

Clinic of Internal Medicine I, Hematology, Oncology and Stem Cell Transplantation, Medical Centre - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Comprehensive Cancer Center Freiburg (CCCF), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; German Cancer Consortium (DKTK), Partner Site, Freiburg; Signalling Research Centres BIOSS and CIBSS, Faculty of Biology University of Freiburg, Freiburg, Germany. Electronic address:

RASSF1A is frequently biallelically inactivated in clear cell renal cell carcinoma (ccRCC) due to loss of chromosome 3p and promoter hypermethylation. Here we investigated the cellular and molecular consequences of single and combined deletion of the Rassf1a and Vhl tumor suppressor genes to model the common ccRCC genotype of combined loss of function of RASSF1A and VHL. In mouse embryonic fibroblasts and in primary kidney epithelial cells, double deletion of Rassf1a and Vhl caused chromosomal segregation defects and increased formation of micronuclei, demonstrating that pVHL and RASSF1A function to maintain genomic integrity.

View Article and Find Full Text PDF

Background: Ischemia and reperfusion (I/R)-induced liver injury contributes to morbidity and mortality during hepatic surgery or liver transplantation. As a pivotal regulator of cancer and inflammation, the role of Von Hippel-Lindau (VHL) in hepatic I/R injury remains undetermined.

Methods: We investigated the role of VHL in hepatic I/R injury by generating VHL conditional knockout (VHL-KO) mice.

View Article and Find Full Text PDF

A nature-inspired HIF stabilizer derived from a highland-adaptation insertion of plateau pika Epas1 protein.

Cell Rep

September 2024

National Institute of Biological Sciences, Beijing 102206, China; Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing 102206, China. Electronic address:

Hypoxia-inducible factors (HIFs) play pivotal roles in numerous diseases and high-altitude adaptation, and HIF stabilizers have emerged as valuable therapeutic tools. In our prior investigation, we identified a highland-adaptation 24-amino-acid insertion within the Epas1 protein. This insertion enhances the protein stability of Epas1, and mice engineered with this insertion display enhanced resilience to hypoxic conditions.

View Article and Find Full Text PDF

Induction of the Mdm2 gene and protein by kinase signaling pathways is repressed by the pVHL tumor suppressor.

Proc Natl Acad Sci U S A

July 2024

Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University, Indianapolis, IN 46022.

The tumor suppressor von Hippel-Lindau, pVHL, is a multifaceted protein. One function is to dock to the hypoxia-inducible transcription factor (HIF) and recruit a larger protein complex that destabilizes HIF via ubiquitination, preventing angiogenesis and tumor development. pVHL also binds to the tumor suppressor p53 to activate specific p53 target genes.

View Article and Find Full Text PDF

Clear cell renal cell carcinoma (ccRCC) is an aggressive cancer driven by VHL loss and aberrant HIF-2α signaling. Identifying means to regulate HIF-2α thus has potential therapeutic benefit. Acetyl-CoA synthetase 2 (ACSS2) converts acetate to acetyl-CoA and is associated with poor patient prognosis in ccRCC.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!