AI Article Synopsis

  • RUNX3, a gene related to the runt domain transcription factor family, is positioned as a potential tumor suppressor linked to colon cancer development due to its frequent promoter hypermethylation.
  • In a study of 17 colon cancer cell lines and 91 sporadic colorectal cancers, RUNX3 promoter hypermethylation was observed in 65% of cell lines and 21% of tumors, particularly in those showing high microsatellite instability (MSI-H).
  • The loss of RUNX3 expression due to this hypermethylation can be reversed, suggesting that its inactivation is an epigenetic mechanism involved in colon carcinogenesis, making it a significant focus alongside other known methylation targets.

Article Abstract

Runt domain transcription factors are important targets of TGF-beta superfamily proteins and play a crucial role in mammalian development. Three mammalian runt-related genes, RUNX1, RUNX2 and RUNX3, have been described. RUNX3 has been shown to be a putative tumor suppressor gene localized to chromosome 1p36, a region showing frequent loss of heterozygosity events in colon, gastric, breast and ovarian cancers. Because of the important role of TGF-beta signaling in the human colon, we hypothesized that RUNX3 may serve as a key tumor suppressor in human colon cancers and colon cancer-derived cell lines. We examined RUNX3 expression and the frequency of RUNX3 promoter hypermethylation in 17 colon cancer cell lines and 91 sporadic colorectal cancers. Semiquantitative analysis of RUNX3 transcripts was performed by RT-PCR and de novo methylation of the RUNX3 promoter was studied by a methylation-specific PCR (MSP) assay. Nineteen of 91 informative tumors (21%) and 11 of 17 (65%) colon cancer cell lines exhibited hypermethylation of the RUNX3 promoter. Interestingly, RUNX3 promoter hypermethylation was more common in tumors exhibiting high frequency of microsatellite instability (MSI-H) (33% of MSI-H vs. 12% of MSI-L/MSS tumors; p = 0.012). Hypermethylation of the RUNX3 promoter correlated with loss of mRNA transcripts in all cell lines. RUNX3 promoter methylation was reversed and its expression restored in SW48 and HCT15 colon cancer cells after treatment with the demethylating agent 5-aza-2'-deoxycytidine, indicating that loss of expression is caused by epigenetic inactivation in colon carcinogenesis. This is the first demonstration of frequent de novo hypermethylation of the RUNX3 promoter in sporadic colon cancers. The significant association of RUNX3 promoter hypermethylation with MSI-H colon cancers suggests that RUNX3 is a novel target of methylation, along with the hMLH1 gene, in the evolution of MSI-H colorectal cancers.

Download full-text PDF

Source
http://dx.doi.org/10.1002/ijc.20472DOI Listing

Publication Analysis

Top Keywords

runx3 promoter
32
colon cancers
16
cell lines
16
runx3
15
promoter hypermethylation
12
colon cancer
12
hypermethylation runx3
12
colon
11
epigenetic inactivation
8
sporadic colon
8

Similar Publications

Background: The development and diversification of sensory proprioceptive neurons, which reside in the dorsal root ganglia (DRG) and express the tropomyosin receptor kinase C (TrkC), depend on the transcription factor (TF) Runx3. Runx3-deficient mice develop severe limb ataxia due to TrkC neuron cell death. Two additional TFs Pou4f1 (also called Brn3a) and Isl1 also play an important role in sensory neuron development.

View Article and Find Full Text PDF

Background: To avoid exaggerated inflammation, innate immune cells adapt to become hypo-responsive or "tolerance" in response to successive exposure to stimuli, which is a part of innate immune memory. Polycomb repressive complex 2 (PRC2) mediates the transcriptional repression by catalyzing histone H3 lysine 27 trimethylation (H3K27me3) but little is known about its role in lipopolysaccharide (LPS)-induced tolerance in macrophages.

Result: We examined the unexplored roles of EED, a component of the PRC2, in LPS tolerant macrophages.

View Article and Find Full Text PDF

Genetic parasites, including viruses and transposons, exploit components from the host for their own replication. However, little is known about virus-transposon interactions within host cells. Here, we discover a strategy where human cytomegalovirus (HCMV) hijacks L1 retrotransposon encoded protein during its replication cycle.

View Article and Find Full Text PDF

Objectives: Previous reports have indicated that the methylation profile in peripheral blood mononuclear cells (PBMCs) in different genes and loci is altered in colorectal cancer (CRC). Regarding the high mortality rate and silent nature of CRC, screening and early detection can meaningfully reduce disease-related deaths. Therefore, for the first time, we aimed to evaluate the early non-invasive diagnosis of CRC via quantitative promoter methylation analysis of RUNX3 and RASSF1A genes in PBMCs.

View Article and Find Full Text PDF

RUNX3-activated apelin signaling inhibits cell proliferation and fibrosis in diabetic nephropathy by regulation of the SIRT1/FOXO pathway.

Diabetol Metab Syndr

July 2024

Department of Nephrology, The Second Clinical Medical College), Zhujiang Hospital of Southern Medical University, No. 253, Middle Industrial Avenue, Haizhu District, Guangzhou, 510280, Guangdong Province, People's Republic of China.

Background: Diabetic nephropathy is a major secondary cause of end-stage renal disease. Apelin plays an important role in the development of DN. Understanding the exact mechanism of Apelin can help expand the means of treating DN.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!