Previous reports have shown expression of immunoreactivity for periostin, originally identified as osteoblast-specific factor-2, in the periosteum and periodontal ligament. However, the developmental changes in its expression and the detailed immunolocalization have remained veiled. The present study was undertaken to examine the spatiotemporal expression of this protein in teeth and their associated tissues of mice during development at light and electron microscopic levels. In tooth germs at cap stage, periostin immunoreactivity was recognizable in the interface between inner enamel epithelium and preodontoblasts as well as in the mesenchymal tissues around cervical loop. Dental follicles around tooth germs at bell stage localized periostin immunopositivity in addition to the immunopositive areas observed in cap-staged tooth germs, although the functional significance of periostin has remained unclear in tooth development. Furthermore, periostin immunoreactivity was also found in the alveolar bone surface. In the incisors of both 7- and 21-day-old mice, immunoreaction for periostin was discernible in the lingual periodontal ligament and labial fibrous tissue adjacent to the papillary layer. After postnatal day 7, immunoreaction for periostin came to be restricted to the fibrous bundles in the periodontal ligament in accordance with the organization of the periodontal fibers, indicating its localization matched the morphogenesis of the periodontal ligament. Immunoelectron microscopic observation of the mature periodontal ligament verified the localization of periostin between the cytoplasmic processes of periodontal fibroblasts and cementoblasts and the adjacent collagen fibrils. Our findings suggest that periostin is involved at the sites of the cell-to-matrix interaction, serving as adhesive equipment for bearing mechanical forces, including occlusal force and tooth eruption.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/ar.a.20080 | DOI Listing |
Neuroscience
January 2025
Department of Orofacial Pain and Jaw Function, Malmö University, Malmö, Sweden; Scandinavian Center for Orofacial Neurosciences (SCON), Aarhus, Denmark; Scandinavian Center for Orofacial Neurosciences (SCON), Malmö, Sweden.
Occlusal tactile acuity (OTA) and bite force are essential components of the sensorimotor control of oral behaviors. While these variables have been studied independently, it has not yet been revealed whether compressive force impacts the occlusal perception mediated by the mechanoreceptive afferents in the periodontal ligament. The present study examined the effect of repetition and maximum bite force on OTA by testing nine aluminum foils of different thicknesses together with a sham test with no foil, three times each, in randomized order in 36 healthy individuals.
View Article and Find Full Text PDFJ Biomed Mater Res B Appl Biomater
January 2025
Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, People's Republic of China.
In dental implant surgery, infection is identified as the primary factor contributing to the failure of bone grafts. There is an urgent need to develop bone graft materials possessing antibacterial characteristics to facilitate bone regeneration. Magnesium phosphate bone cement (MPC) is highly desirable for bone regeneration due to its favorable biocompatibility, plasticity, and osteogenic capabilities.
View Article and Find Full Text PDFCureus
December 2024
Department of Periodontics, Panineeya Institute of Dental Sciences and Research Centre, Hyderabad, IND.
The field of periodontal regeneration focuses on restoring the form and function of periodontal tissues compromised due to diseases affecting the supporting structures of teeth. Biomaterials have emerged as a vital component in periodontal regenerative therapy, offering a variety of properties that enhance cellular interactions, promote healing, and support tissue reconstruction. This review explores current advances in biomaterials for periodontal regeneration, including ceramics, polymers, and composite scaffolds, and their integration with biological agents like growth factors and stem cells.
View Article and Find Full Text PDFJ Proteomics
January 2025
Department of Diagnosis and Surgery, School of Dentistry at Araraquara, São Paulo State University - UNESP, Araraquara, São Paulo, Brazil; Department of Periodontology and Operative Dentistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany.
Periodontal disease affects over 1 billion people globally. This study investigated how periodontitis affects the protein profile of the periodontal ligament (PDL) in rats. Eight Holtzman rats were divided into the control and experimental periodontitis groups.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao 266003, China; School of Stomatology, Qingdao University, Qingdao 266023, China. Electronic address:
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!