The suitability of two polychaete worms, Australonereis ehlersi and Nephtys australiensis, and three bivalves, Mysella anomala, Tellina deltoidalis, and Soletellina alba, were assessed for their potential use in whole-sediment toxicity tests. All species except A. ehlersi, which could not be tested because of poor survival in water-only tests, survived in salinities ranging from 18 per thousand to 34 per thousand during the 96-hour exposure period. No mortality was observed in any of the species exposed to sediment compositions ranging from 100% silt to 100% sand for 10 days, thus demonstrating the high tolerance of the five species to a wide range of sediment types. All species showed decreased survival after exposure to highly sulfidic sediments in 10-day whole-sediment tests. In 96-hour water-only tests, survival decreased, and copper accumulation in body tissues increased with exposure to increasing copper concentration for all species except A. ehlersi, which again could not be tested because of its poor survival in the absence of sediment. S. alba and T. deltoidalis were the most sensitive species to aqueous copper (LC50s of 120 and 150 microg Cu/L, respectively). All species tested were relatively insensitive to dissolved zinc up to concentrations of approximately 1,000 microg/L. In addition and with the exception of N. australiensis, all species accumulated significant levels of zinc in their body tissues. Whole-sediment tests were conducted over a 10-day period with copper-spiked (1,300 microg/g) and zinc-spiked (4,000 microg/g) sediments equilibrated for sufficient time to ensure that pore water metal concentrations were well below concentrations shown to have any effect on organisms in water-only tests. Survival was decreased in the bivalves T. deltoidalis and S. alba after exposure to copper-spiked sediments, and all species-except T. deltoidalis, in which 100% mortality was observed-accumulated copper in their tissues. Exposure to zinc-spiked sediments significantly decreased the survival of only one species, T. deltoidalis. Both polychaetes appeared to regulate concentrations of zinc in their body tissues with no significant uptake of zinc occurring from the sediment phase. Of the five species assessed in this study, T. deltoidalis was found to be the most sensitive to copper- and zinc-contaminated sediments, and based on commonly used selection criteria (ASTM 2002a, ASTM 2002b, ASTM 2002c) is recommended for development as test species in whole-sediment toxicity tests.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00244-004-3122-1DOI Listing

Publication Analysis

Top Keywords

whole-sediment toxicity
12
toxicity tests
12
water-only tests
12
body tissues
12
species
11
tests
8
species ehlersi
8
ehlersi tested
8
tested poor
8
poor survival
8

Similar Publications

Di(2-ethylhexyl)phthalate (DEHP) and di-n-butylphthalate (DBP) frequently coexist in different environmental compartments. Thus, in this study, model aquatic and terrestrial microcosms were prepared to analyze the combined effect of DEHP and DBP on their fate, toxicity, and ecological risk. In the aquatic microcosms, with the addition of the same amount of DEHP and DBP, a higher total amount of DEHP was detected in water, suspended particles, and sediment than DBP due to the higher K and half-life of DEHP than DBP.

View Article and Find Full Text PDF

Mind your tyres: The ecotoxicological impact of urban sediments on an aquatic organism.

Sci Total Environ

November 2024

Department of Molecular Ecology, Senckenberg Biodiversity and Climate Research Centre, Georg-Voigt-Str. 14-16, D-60325 Frankfurt am Main, Germany; LOEWE Centre of Translational Biodiversity Genomics, Senckenberg Biodiversity and Climate Research Centre, Georg-Voigt-Str. 14-16, D-60325 Frankfurt am Main, Germany; Institute for Molecular and Organismic Evolution, Johannes Gutenberg University, Johann-Joachim-Becker-Weg 7, D-55128 Mainz, Germany.

The presence of tyre and road wear particles (TRWP) in the environment is an underestimated threat due to their potential impact on ecosystems and human health. However, their mode of action and potential impacts on aquatic ecosystems remain largely unknown. In the present study, we adopted a sediment exposure scenario to investigate the influence of sediment coming from an urban runoff sedimentation basin on the life cycle of Chironomus riparius.

View Article and Find Full Text PDF

Globally, monitoring of the surface waters is largely limited to the physico-chemical analysis of water in rivers and lakes. Sediment state in the aquatic systems including sediment chemical content or the structure and diversity of benthic communities or ecotoxicological studies with natural sediments remains largely overlooked by the monitoring programs. Hence we assessed the potential toxicity of three riverine sediments on the life-cycle traits (emergence and reproduction) of midge Chironomus riparius via an ecotoxicological testing method over two generations (according to OECD test 233 guidelines).

View Article and Find Full Text PDF

The current Argentine agricultural production model is dependent on agrochemicals such as fertilizers and pesticides. Extensive agriculture and horticulture are the two major productive activities that use copious amounts of pesticides. Extensive agriculture is characterized by areas of 50 to 100 ha of a single crop, while peri-urban horticulture is characterized by intense land use, with farms ranging from 1 to 3 ha cultivated with a variety of vegetables.

View Article and Find Full Text PDF

Water and sediment toxicity and hazard assessment of DCOIT towards neotropical marine organisms.

Environ Pollut

August 2023

São Paulo State University (UNESP), Praça Infante Dom Henrique, S/n, 11330-900, São Vicente, São Paulo, Brazil. Electronic address:

DCOIT is an effective antifouling biocide, which presence in the environment and toxicity towards non-target species has been generating great concern. This study evaluated the waterborne toxicity of DCOIT on marine invertebrates (i.e.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!