Tolerance is an important element of drug addiction and provides a model for understanding neuronal plasticity. The hypothalamic-neurohypophysial system (HNS) is an established preparation in which to study the actions of alcohol. Acute application of alcohol to the rat neurohypophysis potentiates large-conductance calcium-sensitive potassium channels (BK), contributing to inhibition of hormone secretion. A cultured HNS explant from adult rat was used to explore the molecular mechanisms of BK tolerance after prolonged alcohol exposure. Ethanol tolerance was intrinsic to the HNS and consisted of: (1) decreased BK potentiation by ethanol, complete within 12 min of exposure, and (2) decreased current density, which was not complete until 24 hr after exposure, indicating that the two components of tolerance represent distinct processes. Single-channel properties were not affected by chronic exposure, suggesting that decreased current density resulted from downregulation of functional channels in the membrane. Indeed, we observed decreased immunolabeling against the BK alpha-subunit on the surface of tolerant terminals. Analysis using confocal microscopy revealed a reduction of BK channel clustering, likely associated with the internalization of the channel.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6729695 | PMC |
http://dx.doi.org/10.1523/JNEUROSCI.1536-04.2004 | DOI Listing |
Naunyn Schmiedebergs Arch Pharmacol
January 2025
Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, Punjab, India.
Neuropathic pain, a challenging condition often associated with diabetes, trauma, or chemotherapy, impairs patients' quality of life. Current treatments often provide inconsistent relief and notable adverse effects, highlighting the urgent need for safer and more effective alternatives. This review investigates marine-derived bioactive compounds as potential novel therapies for neuropathic pain management.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Institute of Neurology, Department of Medical and Surgical Sciences, University Magna Graecia, 88100 Catanzaro, Italy.
Pathogenic variants are associated with neonatal epilepsies, ranging from self-limited neonatal epilepsy to -developmental and epileptic encephalopathy (DEE). In this study, next-generation sequencing was performed, applying a panel of 142 epilepsy genes on three unrelated individuals and affected family members, showing a wide variability in the epileptic spectrum. The genetic analysis revealed two likely pathogenic missense variants (c.
View Article and Find Full Text PDFMolecules
December 2024
Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan.
Scorpion venom contains various bioactive peptides, many of which exhibit insecticidal activity. The majority of these peptides have a cystine-stabilized α-helix/β-sheet (CSαβ) motif. In addition to these peptides, scorpion venom also contains those with a cystine-stabilized α-helix/α-helix (CSαα) motif, which are known as κ-KTx peptides.
View Article and Find Full Text PDFCell
January 2025
Department of Molecular and Cell Biology and School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA. Electronic address:
Understanding protein function would be facilitated by direct, real-time observation of chemical kinetics in the atomic structure. The selectivity filter (SF) of the K channel provides an ideal model, catalyzing the dehydration and transport of K ions across the cell membrane through a narrow pore. We used a "pump-probe" method called electric-field-stimulated time-resolved X-ray crystallography (EFX) to initiate and observe K conduction in the NaK2K channel in both directions on the timescale of the transport process.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Bioelectricity Laboratory, Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, CA 92697.
Loss-of-function sequence variants in , which encodes the voltage-gated potassium channel Kv1.1, cause Episodic Ataxia Type 1 (EA1) and epilepsy. Due to a paucity of drugs that directly rescue mutant Kv1.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!